RESUMO
OBJECTIVES: Patients with severe COVID-19 may be at risk of longer term sequelae. Long-term clinical, immunological, pulmonary and radiological outcomes of patients treated with anti-inflammatory drugs are lacking. METHODS: In this single-centre prospective cohort study, we assessed 90-day clinical, immunological, pulmonary and radiological outcomes of hospitalised patients with severe COVID-19 treated with tocilizumab from March 2020 to May 2020. Criteria for tocilizumab administration were oxygen saturation <93%, respiratory rate >30/min, C-reactive protein levels >75 mg/l, extensive area of ground-glass opacities or progression on computed tomography (CT). Descriptive analyses were performed using StataIC 16. RESULTS: Between March 2020 and May 2020, 50 (27%) of 186 hospitalised patients had severe COVID-19 and were treated with tocilizumab. Of these, 52% were hospitalised on the intensive care unit (ICU) and 12% died. Eleven (22%) patients developed at least one microbiologically confirmed super-infection, of which 91% occurred on ICU. Median duration of hospitalisation was 15 days (interquartile range [IQR] 10–24) with 24 days (IQR 14–32) in ICU patients and 10 days (IQR 7–15) in non-ICU patients. At day 90, 41 of 44 survivors (93%) were outpatients. No long-term adverse events or late-onset infections were identified after acute hospital care. High SARS-CoV-2 antibody titres were found in all but one patient, who was pretreated with rituximab. Pulmonary function tests showed no obstructive patterns, but restrictive patterns in two (5.7%) and impaired diffusion capacities for carbon monoxide in 11 (31%) of 35 patients, which predominated in prior ICU patients. Twenty-one of 35 (60%) CT-scans at day 90 showed residual abnormalities, with similar distributions between prior ICU and non-ICU patients. CONCLUSIONS: In this cohort of severe COVID-19 patients, no tocilizumab-related long-term adverse events or late-onset infections were identified. Although chest CT abnormalities were highly prevalent at day 90, the majority of patients showed normal lung function. TRIAL REGISTRATION: ClinicalTrials.gov NCT04351503.
Assuntos
Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais Humanizados , Estudos de Coortes , Humanos , Estudos Prospectivos , SARS-CoV-2RESUMO
A variety of antiviral treatments for COVID-19 have been investigated, involving many repurposed drugs. Currently, the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors, e.g., remdesivir, the only provisionally approved treatment to-date, although the clinical impact of these interventions remains inconclusive. However, the potential emergence of antiviral resistance poses a threat to the efficacy of any successful therapies on a wide scale. Here, we propose a framework to monitor the emergence of antiviral resistance, and as a proof of concept, we address the interaction between RdRp and remdesivir. We show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare in circulating lineages, and that those mutations, where present, do not destabilise RdRp. In more than 56,000 viral genomes from 105 countries from the first pandemic wave, we found negative selective pressure affecting nsp12 (Tajima's D = -2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Potential escape mutations included known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations involved globally, in silico structural models found that they were unlikely to be associated with loss of stability in RdRp. No potential escape mutation was found in a local cohort of remdesivir treated patients. Collectively, these findings indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. We anticipate our framework to be the starting point of a larger effort for a global monitoring of drug resistance throughout the COVID-19 pandemic.