Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 41(1): 14-20, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25035950

RESUMO

Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Terminologia como Assunto , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Guias como Assunto , Humanos , Fator Estimulador de Colônias de Macrófagos/imunologia , Camundongos , Pesquisa
2.
Development ; 146(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624071

RESUMO

The epicardium plays a crucial role in embryonic heart development and adult heart repair; however, the molecular events underlying its maturation remain unknown. Wt1, one of the main markers of the embryonic epicardium, is essential for epicardial development and function. Here, we analyse the transcriptomic profile of epicardial-enriched cells at different stages of development and from control and epicardial-specific Wt1 knockout (Wt1KO) mice. Transcriptomic and cell morphology analyses of epicardial cells from epicardial-specific Wt1KO mice revealed a defect in the maturation process of the mutant epicardium, including sustained upregulation of Bmp4 expression and the inability of mutant epicardial cells to transition into a mature squamous phenotype. We identified Bmp4 as a transcriptional target of Wt1, thus providing a molecular basis for the retention of the cuboidal cell shape observed in the Wt1KO epicardium. Accordingly, inhibition of the Bmp4 signalling pathway both ex vivo and in vivo rescued the cuboidal phenotype of the mutant epicardium. Our findings indicate the importance of the cuboidal-to-squamous transition in epicardial maturation, a process regulated by Wt1.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Pericárdio/citologia , Pericárdio/metabolismo , Proteínas WT1/metabolismo , Animais , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Células Cultivadas , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Pericárdio/efeitos dos fármacos , Pericárdio/ultraestrutura , Proteínas WT1/genética
3.
Appl Environ Microbiol ; 88(1): e0138521, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669453

RESUMO

Lactic acid bacteria (LAB) are gut symbionts that can be used as a model to understand the host-microbiota cross talk under unpredictable environmental conditions, such as wildlife ecosystems. The aim of this study was to determine whether viable LAB can be informative of the health status of wild boar populations. We monitored the genotype and phenotype of LAB based on markers that included safety and phylogenetic origin, antibacterial activity, and immunomodulatory properties. A LAB profile dominated by lactobacilli appears to stimulate protective immune responses and relates to strains widely used as probiotics, resulting in a potentially healthy wildlife population, whereas microbiota overpopulated by enterococci was observed in a hostile environment. These enterococci were closely related to pathogenic strains that have developed mechanisms to evade innate immune systems, posing a potential risk for host health. Furthermore, our LAB isolates displayed antibacterial properties in a species-dependent manner. Nearly all of them were able to inhibit bacterial pathogens, raising the possibility of using them as an a la carte antibiotic alternative in the unexplored field of wildlife disease mitigation. Our study highlights that microbiological characterization of LAB is a useful indicator of wildlife health status and the ecological origin from which they derive. IMPORTANCE The wildlife symbiotic microbiota is an important component for the greater diversity and functionality of their bacterial populations, influencing host health and adaptability to its ecosystem. Although many microbes are partly responsible for the development of multiple physiological processes, only certain bacterial groups, such as lactic acid bacteria (LAB), have the capacity to overpopulate the gut, promoting health (or disease) when specific genetic and environmental conditions are present. LAB have been exploited in many ways due to their probiotic properties, particularly lactobacilli; however, their relationship with wildlife gut-associated microbiota hosts remains to be elucidated. On the other hand, it is unclear whether LAB such as enterococci, which have been associated with detrimental health effects, could lead to disease. These important questions have not been properly considered in the field of wildlife and, therefore, should be clearly addressed.


Assuntos
Microbiota , Probióticos , Animais , Animais Selvagens , Bactérias/genética , Nível de Saúde , Filogenia
4.
BMC Biol ; 19(1): 246, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34794433

RESUMO

Cell membrane fusion and multinucleation in macrophages are associated with physiologic homeostasis as well as disease. Osteoclasts are multinucleated macrophages that resorb bone through increased metabolic activity resulting from cell fusion. Fusion of macrophages also generates multinucleated giant cells (MGCs) in white adipose tissue (WAT) of obese individuals. For years, our knowledge of MGCs in WAT has been limited to their description as part of crown-like structures (CLS) surrounding damaged adipocytes. However, recent evidence indicates that these cells can phagocytose oversized lipid remnants, suggesting that, as in osteoclasts, cell fusion and multinucleation are required for specialized catabolic functions. We thus reason that WAT MGCs can be viewed as functionally analogous to osteoclasts and refer to them in this article as adipoclasts. We first review current knowledge on adipoclasts and their described functions. In view of recent advances in single cell genomics, we describe WAT macrophages from a 'fusion perspective' and speculate on the ontogeny of adipoclasts. Specifically, we highlight the role of CD9 and TREM2, two plasma membrane markers of lipid-associated macrophages in WAT, which have been previously described as regulators of fusion and multinucleation in osteoclasts and MGCs. Finally, we consider whether strategies aiming to target WAT macrophages can be more selectively directed against adipoclasts.


Assuntos
Células Gigantes , Macrófagos , Fusão Celular , Humanos , Lipídeos , Glicoproteínas de Membrana , Osteoclastos , Receptores Imunológicos
5.
Immunology ; 164(3): 587-601, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34287854

RESUMO

Sepsis is a life-threatening condition involving a dysregulated immune response to infectious agents that cause injury to host tissues and organs. Current treatments are limited to early administration of antibiotics and supportive care. While appealing, the strategy of targeted inhibition of individual molecules in the inflammatory cascade has not proved beneficial. Non-targeted, systemic immunosuppression with steroids has shown limited efficacy and raises concern for secondary infection. Iminosugars are a class of small molecule glycomimetics with distinct inhibition profiles for glycan processing enzymes based on stereochemistry. Inhibition of host endoplasmic reticulum resident glycoprotein processing enzymes has demonstrated efficacy as a broad-spectrum antiviral strategy, but limited consideration has been given to the effects on host glycoprotein production and consequent disruption of signalling cascades. This work demonstrates that iminosugars inhibit dengue virus, bacterial lipopolysaccharide and fungal antigen-stimulated cytokine responses in human macrophages. In spite of decreased inflammatory mediator production, viral replication is suppressed in the presence of iminosugar. Transcriptome analysis reveals the key interaction of pathogen-induced endoplasmic reticulum stress, the resulting unfolded protein response and inflammation. Our work shows that iminosugars modulate these interactions. Based on these findings, we propose a new therapeutic role for iminosugars as treatment for sepsis-related inflammatory disorders associated with excess cytokine secretion.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Sepse/tratamento farmacológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antígenos de Fungos/imunologia , Células Cultivadas , Vírus da Dengue/imunologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Macrófagos , Cultura Primária de Células , Sepse/imunologia , Sepse/microbiologia , Receptor 4 Toll-Like/metabolismo , Resposta a Proteínas não Dobradas/imunologia
6.
BMC Med ; 18(1): 3, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31907005

RESUMO

BACKGROUND: Endometriosis is a gynaecological condition characterised by immune cell infiltration and distinct inflammatory signatures found in the peritoneal cavity. In this study, we aim to characterise the immune microenvironment in samples isolated from the peritoneal cavity in patients with endometriosis. METHODS: We applied mass cytometry (CyTOF), a recently developed multiparameter single-cell technique, in order to characterise and quantify the immune cells found in peritoneal fluid and peripheral blood from endometriosis and control patients. RESULTS: Our results demonstrate the presence of more than 40 different distinct immune cell types within the peritoneal cavity. This suggests that there is a complex and highly heterogeneous inflammatory microenvironment underpinning the pathology of endometriosis. Stratification by clinical disease stages reveals a dynamic spectrum of cell signatures suggesting that adaptations in the inflammatory system occur due to the severity of the disease. Notably, among the inflammatory microenvironment in peritoneal fluid (PF), the presence of CD69+ T cell subsets is increased in endometriosis when compared to control patient samples. On these CD69+ cells, the expression of markers associated with T cell function are reduced in PF samples compared to blood. Comparisons between CD69+ and CD69- populations reveal distinct phenotypes across peritoneal T cell lineages. Taken together, our results suggest that both the innate and the adaptive immune system play roles in endometriosis. CONCLUSIONS: This study provides a systematic characterisation of the specific immune environment in the peritoneal cavity and identifies cell immune signatures associated with endometriosis. Overall, our results provide novel insights into the specific cell phenotypes governing inflammation in patients with endometriosis. This prospective study offers a useful resource for understanding disease pathology and opportunities for identifying therapeutic targets.


Assuntos
Líquido Ascítico/imunologia , Endometriose/imunologia , Líquido Ascítico/metabolismo , Líquido Ascítico/patologia , Endometriose/metabolismo , Endometriose/patologia , Feminino , Citometria de Fluxo , Humanos , Estudos Prospectivos , Linfócitos T
7.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L369-L384, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520687

RESUMO

Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can generate oxidants and are known to display aberrant polarization patterns and defective phagocytic responses in these diseases. Whether these characteristics are linked in one way or another and whether they contribute to the onset and severity of exacerbations in asthma and COPD remain poorly understood. Insight into oxidative stress, macrophages, and their interactions may be important in fully understanding acute worsening of lung disease. This review therefore highlights the current state of the art regarding the role of oxidative stress and macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate macrophage function, which may result in impaired responses toward exacerbating triggers and may contribute to exaggerated inflammation in the airways.


Assuntos
Asma/imunologia , Macrófagos/imunologia , Estresse Oxidativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Humanos , Inflamação/imunologia , Macrófagos Alveolares/imunologia
8.
Immunity ; 32(5): 593-604, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20510870

RESUMO

The concept of an alternative pathway of macrophage activation has stimulated interest in its definition, mechanism, and functional significance in homeostasis and disease. We assess recent research in this field, argue for a restricted definition, and explore pathways by which the T helper 2 (Th2) cell cytokines interleukin-4 (IL-4) and IL-13 mediate their effects on macrophage cell biology, their biosynthesis, and responses to a normal and pathological microenvironment. The stage is now set to gain deeper insights into the role of alternatively activated macrophages in immunobiology.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Neoplasias/fisiopatologia , Animais , Citocinas/imunologia , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Biológicos , Neoplasias/imunologia , Receptores de Interleucina/imunologia , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 112(34): 10768-73, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261308

RESUMO

Th17 responses are critical to a variety of human autoimmune diseases, and therapeutic targeting with monoclonal antibodies against IL-17 and IL-23 has shown considerable promise. Here, we report data to support selective bromodomain blockade of the transcriptional coactivators CBP (CREB binding protein) and p300 as an alternative approach to inhibit human Th17 responses. We show that CBP30 has marked molecular specificity for the bromodomains of CBP and p300, compared with 43 other bromodomains. In unbiased cellular testing on a diverse panel of cultured primary human cells, CBP30 reduced immune cell production of IL-17A and other proinflammatory cytokines. CBP30 also inhibited IL-17A secretion by Th17 cells from healthy donors and patients with ankylosing spondylitis and psoriatic arthritis. Transcriptional profiling of human T cells after CBP30 treatment showed a much more restricted effect on gene expression than that observed with the pan-BET (bromo and extraterminal domain protein family) bromodomain inhibitor JQ1. This selective targeting of the CBP/p300 bromodomain by CBP30 will potentially lead to fewer side effects than with the broadly acting epigenetic inhibitors currently in clinical trials.


Assuntos
Benzimidazóis/farmacologia , Imunossupressores/farmacologia , Interleucina-17/metabolismo , Isoxazóis/farmacologia , Células Th17/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Adulto , Idoso , Artrite Psoriásica/metabolismo , Artrite Psoriásica/patologia , Azepinas/farmacologia , Benzimidazóis/química , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Calorimetria , Células Cultivadas , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunossupressores/química , Interleucina-17/biossíntese , Interleucina-17/genética , Isoxazóis/química , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Espondilite Anquilosante/metabolismo , Espondilite Anquilosante/patologia , Relação Estrutura-Atividade , Células Th17/imunologia , Triazóis/farmacologia
10.
Br J Sports Med ; 52(6): 359-367, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29118051

RESUMO

BACKGROUND: Recent investigation of human tissue and cells from positional tendons such as the rotator cuff has clarified the importance of inflammation in the development and progression of tendon disease. These mechanisms remain poorly understood in disease of energy-storing tendons such as the Achilles. Using tissue biopsies from patients, we investigated if inflammation is a feature of Achilles tendinopathy and rupture. METHODS: We studied Achilles tendon biopsies from symptomatic patients with either mid-portion tendinopathy or rupture for evidence of abnormal inflammatory signatures. Tendon-derived stromal cells from healthy hamstring and diseased Achilles were cultured to determine the effects of cytokine treatment on expression of inflammatory markers. RESULTS: Tendinopathic and ruptured Achilles highly expressed CD14+ and CD68+ cells and showed a complex inflammation signature, involving NF-κB, interferon and STAT-6 activation pathways. Interferon markers IRF1 and IRF5 were highly expressed in tendinopathic samples. Achilles ruptures showed increased PTGS2 and interleukin-8 expression. Tendinopathic and ruptured Achilles tissues expressed stromal fibroblast activation markers podoplanin and CD106. Tendon cells isolated from diseased Achilles showed increased expression of pro-inflammatory and stromal fibroblast activation markers after cytokine stimulation compared with healthy hamstring tendon cells. CONCLUSIONS: Tissue and cells derived from tendinopathic and ruptured Achilles tendons show evidence of chronic (non-resolving) inflammation. The energy-storing Achilles shares common cellular and molecular inflammatory mechanisms with functionally distinct rotator cuff positional tendons. Differences seen in the profile of ruptured Achilles are likely to be attributable to a superimposed phase of acute inflammation and neo-vascularisation. Strategies that target chronic inflammation are of potential therapeutic benefit for patients with Achilles tendon disease.


Assuntos
Tendão do Calcâneo/fisiopatologia , Inflamação/patologia , Ruptura/patologia , Tendinopatia/patologia , Tendão do Calcâneo/citologia , Adulto , Idoso , Biomarcadores/análise , Biópsia , Células Cultivadas , Feminino , Músculos Isquiossurais/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Células Estromais/citologia , Adulto Jovem
11.
Arterioscler Thromb Vasc Biol ; 35(3): 535-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573853

RESUMO

OBJECTIVE: We previously showed that cholesterol loading in vitro converts mouse aortic vascular smooth muscle cells (VSMC) from a contractile state to one resembling macrophages. In human and mouse atherosclerotic plaques, it has become appreciated that ≈40% of cells classified as macrophages by histological markers may be of VSMC origin. Therefore, we sought to gain insight into the molecular regulation of this clinically relevant process. APPROACH AND RESULTS: VSMC of mouse (or human) origin were incubated with cyclodextrin-cholesterol complexes for 72 hours, at which time the expression at the protein and mRNA levels of contractile-related proteins was reduced and of macrophage markers increased. Concurrent was downregulation of miR-143/145, which positively regulate the master VSMC differentiation transcription factor myocardin. Mechanisms were further probed in mouse VSMC. Maintaining the expression of myocardin or miR-143/145 prevented and reversed phenotypic changes caused by cholesterol loading. Reversal was also seen when cholesterol efflux was stimulated after loading. Notably, despite expression of macrophage markers, bioinformatic analyses showed that cholesterol-loaded cells remained closer to the VSMC state, consistent with impairment in classical macrophage functions of phagocytosis and efferocytosis. In apoE-deficient atherosclerotic plaques, cells positive for VSMC and macrophage markers were found lining the cholesterol-rich necrotic core. CONCLUSIONS: Cholesterol loading of VSMC converts them to a macrophage-appearing state by downregulating the miR-143/145-myocardin axis. Although these cells would be classified by immunohistochemistry as macrophages in human and mouse plaques, their transcriptome and functional properties imply that their contributions to atherogenesis would not be those of classical macrophages.


Assuntos
Transdiferenciação Celular , Colesterol/metabolismo , Células Espumosas/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Sítios de Ligação , Linhagem da Célula , HDL-Colesterol/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Células Espumosas/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Células Jurkat , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Necrose , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Fenótipo , Placa Aterosclerótica , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fatores de Tempo , Transativadores/genética , Transfecção
12.
J Immunol ; 192(3): 1196-208, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24395918

RESUMO

Glucocorticoids (GCs) have been used for more than 50 y as immunosuppressive drugs, yet their efficacy in macrophage-dominated disorders, such as chronic obstructive pulmonary disease, is debated. Little is known how long-term GC treatment affects macrophage responses in inflammatory conditions. In this study, we compared the transcriptome of human macrophages, matured in the presence or absence of fluticasone propionate (FP), and their ability to initiate or sustain classical activation, mimicked using acute LPS and chronic IFN-γ stimulation, respectively. We identified macrophage gene expression networks, modulated by FP long-term exposure, and specific patterns of IFN-γ- and LPS-induced genes that were resistant, inhibited, or exacerbated by FP. Results suggest that long-term treatment with GCs weakens adaptive immune signature components of IFN-γ and LPS gene profiles by downmodulating MHC class II and costimulatory molecules, but strengthens innate signature components by maintaining and increasing expression of chemokines involved in phagocyte attraction. In a mouse model of chronic obstructive pulmonary disease, GC treatment induced higher chemokine levels, and this correlated with enhanced recruitment of leukocytes. Thus, GCs do not generally suppress macrophage effector functions, but they cause a shift in the innate-adaptive balance of the immune response, with distinct changes in the chemokine-chemokine receptor network.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Androstadienos/farmacologia , Budesonida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Imunidade Adaptativa/genética , Animais , Budesonida/uso terapêutico , Células Cultivadas , Citocinas/biossíntese , Fluticasona , Humanos , Imunidade Inata/genética , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/fisiologia , Organismos Livres de Patógenos Específicos , Células Th1/imunologia , Poluição por Fumaça de Tabaco/efeitos adversos , Receptor 4 Toll-Like/fisiologia , Transcriptoma
13.
Hum Mol Genet ; 22(25): 5083-95, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23900076

RESUMO

The embryonic epicardium is an important source of cardiovascular precursor cells and paracrine factors that are required for adequate heart formation. Signaling pathways regulated by WT1 that promote heart development have started to be described; however, there is little information on signaling pathways regulated by WT1 that could act in a negative manner. Transcriptome analysis of Wt1KO epicardial cells reveals an unexpected role for WT1 in repressing the expression of interferon-regulated genes that could be involved in a negative regulation of heart morphogenesis. Here, we showed that WT1 is required to repress the expression of the chemokines Ccl5 and Cxcl10 in epicardial cells. We observed an inverse correlation of Wt1 and the expression of Cxcl10 and Ccl5 during epicardium development. Chemokine receptor analyses of hearts from Wt1(gfp/+) mice demonstrate the differential expression of their chemokine receptors in GFP(+) epicardial enriched cells and GFP(-) cells. Functional assays demonstrate that CXCL10 and CCL5 inhibit epicardial cells migration and the proliferation of cardiomyocytes respectively. WT1 regulates the expression levels of Cxcl10 and Ccl5 in epicardial cells directly and indirectly through increasing the levels of IRF7. As epicardial cell reactivation after a myocardial damage is linked with WT1 expression, the present work has potential implications in adult heart repair.


Assuntos
Quimiocina CCL5/biossíntese , Quimiocina CXCL10/biossíntese , Coração/crescimento & desenvolvimento , Pericárdio/crescimento & desenvolvimento , Proteínas WT1/genética , Animais , Quimiocina CCL5/genética , Quimiocina CXCL10/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pericárdio/citologia , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Proteínas WT1/biossíntese
14.
Blood ; 121(9): e57-69, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23293084

RESUMO

The molecular repertoire of macrophages in health and disease can provide novel biomarkers for diagnosis, prognosis, and treatment. Th2-IL-4­activated macrophages (M2) have been associated with important diseases in mice, yet no specific markers are available for their detection in human tissues. Although mouse models are widely used for macrophage research, translation to the human can be problematic and the human macrophage system remains poorly described. In the present study, we analyzed and compared the transcriptome and proteome of human and murine macrophages under resting conditions (M0) and after IL-4 activation (M2). We provide a resource for tools enabling macrophage detection in human tissues by identifying a set of 87 macrophage-related genes. Furthermore, we extend current understanding of M2 activation in different species and identify Transglutaminase 2 as a conserved M2 marker that is highly expressed by human macrophages and monocytes in the prototypic Th2 pathology asthma.


Assuntos
Interleucina-4/farmacologia , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transcriptoma , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteoma/análise , Proteoma/efeitos dos fármacos , Especificidade da Espécie
15.
Cell Rep ; 43(6): 114352, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870011

RESUMO

Addressing the mononuclear phagocyte system (MPS) and macrophage M1/M2 activation is important in diagnosing hematological disorders and inflammatory pathologies and designing therapeutic tools. CSF1R is a reliable marker to identify all circulating MPS cells and tissue macrophages in humans using a single surface protein. CSF1R permits the quantification and isolation of monocyte and dendritic cell (DC) subsets in conjunction with CD14, CD16, and CD1c and is stable across the lifespan and sexes in the absence of overt pathology. Beyond cell detection, measuring M1/M2 activation in humans poses challenges due to response heterogeneity, transient signaling, and multiple regulation steps for transcripts and proteins. MPS cells respond in a conserved manner to M1/M2 pathways such as interleukin-4 (IL-4), steroids, interferon-γ (IFNγ), and lipopolysaccharide (LPS), for which we propose an ad hoc modular gene expression tool. Signature analysis highlights macrophage activation mosaicism in experimental samples, an emerging concept that points to mixed macrophage activation states in pathology.


Assuntos
Ativação de Macrófagos , Macrófagos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Interferon gama/metabolismo , Lipopolissacarídeos/farmacologia , Feminino , Mosaicismo , Masculino , Monócitos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Interleucina-4/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/genética , Antígenos CD1/metabolismo , Antígenos CD1/genética , Sistema Fagocitário Mononuclear/metabolismo , Glicoproteínas , Receptor de Fator Estimulador de Colônias de Macrófagos
16.
Front Immunol ; 14: 1141731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359536

RESUMO

Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ácidos Graxos Ômega-3 , Animais , Camundongos , Ácido Eicosapentaenoico/farmacologia , Interleucina-10/farmacologia , PPAR gama , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cicatrização , Colágeno/metabolismo , Suplementos Nutricionais
17.
Eur J Immunol ; 41(6): 1531-4, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21607943

RESUMO

Macrophages are ubiquitous phagocytes that can constitute up to 15% of the cellular content of tissues. These heterogeneous cells of the innate immune system perform important functions during health and disease. Equipped with receptors for the T helper cell cytokines INF-γ and IL-4, macrophages undergo specific activation programs during Th1 or Th2 immune responses. These activation profiles, termed classical (M1) or alternative (M2) activation respectively, are further tuned by the presence and recognition of microbial-associated molecular patterns, other cytokines, lipids, and even adhesion to the substratum. The activation of macrophages also relies on the maturation background of the cells, elicitation of complicated intracellular signalling cascades, and the crosstalk between the different signalling elements. Of interest, not all genes participating in the activation-related signalling cascades are equally important for the elicitation of functional profiles and a regulator gene hierarchy is emerging for the different types of activation. In this issue of the European Journal of Immunology, two papers add to our understanding of how cellular kinases and phosphatases, related to the PI3K pathway, regulate M1 or M2 activation programmes in macrophages.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Ativação de Macrófagos/genética , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Regulação da Expressão Gênica/imunologia , Inositol Polifosfato 5-Fosfatases , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/imunologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/imunologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Transdução de Sinais , Equilíbrio Th1-Th2
18.
Front Immunol ; 12: 775326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975863

RESUMO

Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected macrophages are surrounded by other immune cells in well organised structures called granulomata. As part of the response to TB, a type of macrophage loaded with lipid droplets arises which we call Foam cell macrophages. They are macrophages filled with lipid laden droplets, which are synthesised in response to increased uptake of extracellular lipids, metabolic changes and infection itself. They share the appearance with atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and immune properties of foam cells in TB, and address gaps in our knowledge to guide further research.


Assuntos
Células Espumosas/fisiologia , Gotículas Lipídicas/fisiologia , Tuberculose/imunologia , Células Espumosas/imunologia , Humanos , Triglicerídeos/biossíntese
19.
Immunother Adv ; 1(1): ltab003, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35915730

RESUMO

Mononuclear phagocytes defend tissues, present antigens, and mediate recovery and healing. To date, we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess mononuclear phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state, CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked ex vivo to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.

20.
Virology ; 562: 9-18, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242748

RESUMO

Monocytes/macrophages are important target cells for HIV-1. Here, we investigated whether HIV-1 induces changes in the macrophage gene expression profile to support viral replication. We observed that the macrophage gene expression profiles dramatically changed upon HIV-1 infection. The majority of the HIV-1 regulated genes were also differentially expressed in M2a macrophages. The biological functions associated with the HIV-1 induced gene expression profile in macrophages were mainly related to inflammatory responses. CD9 and ITGA3 were among the top genes upregulated upon HIV-1 infection. We showed that these genes support viral replication and that downregulation of these genes decreased HIV-1 replication in macrophages. Here we showed that HIV-1 infection of macrophages induces a gene expression profile that may dampen inflammatory responses. CD9 and ITGA3 were among the top genes regulated by HIV-1 and were shown to support viral production most likely at the level of viral budding and release.


Assuntos
HIV-1/fisiologia , Integrina alfa3/metabolismo , Macrófagos/virologia , Tetraspanina 29/metabolismo , Replicação Viral/fisiologia , Perfilação da Expressão Gênica , Humanos , Integrina alfa3/genética , Macrófagos/metabolismo , Tetraspanina 29/genética , Liberação de Vírus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA