Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 49(1): e12885, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709989

RESUMO

AIMS: N6 -methyladenosine modification of RNA (m6 A) regulates translational control, which may influence neuronal dysfunction underlying neurodegenerative diseases. METHODS: Using microscopy and a machine learning approach, we performed cellular profiling of m6 A-RNA abundance and YTHDF1/YTHDF3 m6 A reader expression within four regions of the human brain from non-affected individuals and individuals with Parkinson's disease, dementia with Lewy bodies or mild cognitive impairment (MCI). RESULTS: In non-diseased tissue, we found that m6 A-modified RNAs showed cell-type and sub-compartment-specific variation. YTHDF1 and YTHDF3 showed opposing expression patterns in the cerebellum and the frontal and cingulate cortices. Machine learning quantitative image analysis revealed that m6 A-modified transcripts were significantly altered in localisation and abundance in disease tissue with significant decreases in m6 A-RNAs in Parkinson's disease, and significant increases in m6 A-RNA abundance in dementia with Lewy bodies. MCI tissue showed variability across regions but similar to DLB; in brain areas with an overall significant increase in m6 A-RNAs, modified RNAs within dendritic processes were reduced. Using mass spectrometry proteomic datasets to corroborate our findings, we found significant changes in YTHDF3 and m6 A anti-reader protein abundance in Alzheimer's disease (AD) and asymptomatic AD/MCI tissue and correlation with cognitive resilience. CONCLUSIONS: These results provide evidence for disrupted m6 A regulation in Lewy body diseases and a plausible mechanism through which RNA processing could contribute to the formation of Lewy bodies and other dementia-associated pathological aggregates. The findings suggest that manipulation of epitranscriptomic processes influencing translational control may lead to new therapeutic approaches for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Metilação , Corpos de Lewy/patologia , Proteômica , Doença de Alzheimer/patologia , Encéfalo/patologia , RNA/metabolismo , RNA Mensageiro/metabolismo
2.
Mol Psychiatry ; 26(12): 7141-7153, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663904

RESUMO

Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapses. However how RNA is regulated, and which transcripts are silenced or processed as part of the tagging process is still unknown. Modification of RNA by N6-methyladenosine (m6A/m) influences the cellular fate of mRNA. Here, by advanced microscopy, we showed that m6A demethylation by the eraser protein ALKBH5 occurs at active synaptic ribosomes and at synapses during short term plasticity. We demonstrated that at activated glutamatergic post-synaptic sites, both the YTHDF1 and YTHDF3 reader and the ALKBH5 eraser proteins increase in co-localisation to m6A-modified RNAs; but only the readers showed high co-localisation to modified RNAs during late-stage plasticity. The YTHDF1 and YTHFDF3 readers also exhibited differential roles during synaptic maturation suggesting that temporal and subcellular abundance may determine specific function. m6A-sequencing of human parahippocampus brain tissue revealed distinct white and grey matter m6A methylome profiles indicating that cellular context is a fundamental factor dictating regulated pathways. However, in both neuronal and glial cell-rich tissue, m6A effector proteins are themselves modified and m6A epitranscriptional and posttranslational modification processes coregulate protein cascades. We hypothesise that the availability m6A effector protein machinery in conjunction with RNA modification, may be important in the formation of condensed synaptic nanodomain assemblies through liquid-liquid phase separation. Our findings support that m6A demethylation by ALKBH5 is an intrinsic component of the synaptic tagging hypothesis and a molecular switch which leads to alterations in the RNA methylome, synaptic dysfunction and potentially reversible disease states.


Assuntos
Epigenoma , Sinapses , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Encéfalo/metabolismo , Desmetilação , Humanos , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
3.
Ann Hum Biol ; 43(6): 563-571, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26647803

RESUMO

BACKGROUND: STRs are powerful tools intensively used in forensic and kinship studies. AIM: In order to assess the effectiveness of non-CODIS genetic markers in forensic and paternity tests, the genetic composition of six mini short tandem repeats-mini-STRs-(D1S1656, D2S441, D6S1043, D10S1248, D12S391, D22S1045) and the microsatellite SE33 in Mestizo and Amerindian populations from Mexico were studied. SUBJECTS AND METHODS: Using multiplex polymerase chain reactions and capillary electrophoresis, this study genotyped all loci from 870 chromosomes and evaluated the statistical genetic parameters. RESULTS: All mini-STRs studied were in agreement with HW and linkage equilibrium; however, an important HW departure for SE33 was found in the Mestizo population (p ≤ 0.0001). Regarding paternity and forensic statistical parameters, high values of combined power discrimination and mean power of exclusion were found using these seven markers. The principal co-ordinate analysis based on allele frequencies of three mini-STRs showed the complex genetic architecture of the Mestizo population. CONCLUSION: The results indicate that this set of loci is suitable to genetically identify individuals in the Mexican population, supporting its effectiveness in human identification casework. In addition, these findings add new statistical values and emphasise the importance of the use of non-CODIS markers in complex populations in order to avoid erroneous assumptions.


Assuntos
Etnicidade/genética , Genética Forense , Loci Gênicos , Genética Populacional , Indígenas Sul-Americanos/genética , Repetições de Microssatélites/genética , Paternidade , Feminino , Humanos , Masculino , México , Reação em Cadeia da Polimerase , Análise de Componente Principal , Estatística como Assunto
4.
Adv Biol Regul ; 87: 100926, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513580

RESUMO

Reversible N6-methyladenosine (m6A) RNA modification is a posttranscriptional epigenetic modification of the RNA that regulates many key aspects of RNA metabolism and function. In this review, we highlight major recent advances in the field, with special emphasis on the potential link between m6A modifications and RNA structure. We will also discuss the role of RNA methylation of neuronal transcripts, and the emerging evidence of a potential role in RNA transport and local translation in dendrites and axons of transcripts involved in synaptic functions and axon growth.


Assuntos
Adenosina , Epigênese Genética , Humanos , Metilação , RNA Mensageiro/metabolismo , Adenosina/química , Adenosina/genética , Adenosina/metabolismo , Processamento de Proteína Pós-Traducional
5.
iScience ; 26(1): 105695, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582820

RESUMO

Brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation and survival and is implicated in the pathogenesis of many neurological disorders. Here, we identified a novel intergenic enhancer located 170 kb from the Bdnf gene, which promotes the expression of Bdnf transcript variants during mouse neuronal differentiation and activity. Following Bdnf activation, enhancer-promoter contacts increase, and the region moves away from the repressive nuclear periphery. Bdnf enhancer activity is necessary for neuronal clustering and dendritogenesis in vitro, and for cortical development in vivo. Our findings provide the first evidence of a regulatory mechanism whereby the activation of a distal enhancer promotes Bdnf expression during brain development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA