RESUMO
Hybrid metal-halide perovskites are promising new materials for use in solar cells; however, their chemical stability in the presence of moisture remains a significant drawback. Quasi two-dimensional (2D) perovskites that incorporate hydrophobic organic interlayers offer improved resistance to degradation by moisture, currently still at the cost of overall cell efficiency. To elucidate the factors affecting the optoelectronic properties of these materials, we have investigated the charge transport properties and crystallographic orientation of mixed methylammonium (MA)-phenylethylammonium (PEA) lead iodide thin films as a function of the MA-to-PEA ratio and, thus, the thickness of the "encapsulated" MA lead-halide layers. We find that monomolecular charge-carrier recombination rates first decrease with increasing PEA fraction, most likely as a result of trap passivation, but then increase significantly as excitonic effects begin to dominate for thin confined layers. Bimolecular and Auger recombination rate constants are found to be sensitive to changes in electronic confinement, which alters the density of states for electronic transitions. We demonstrate that effective charge-carrier mobilities remain remarkably high (near 10 cm2V-1s-1) for intermediate PEA content and are enhanced for preferential orientation of the conducting lead iodide layers along the probing electric field. The trade-off between trap reduction, electronic confinement, and layer orientation leads to calculated charge-carrier diffusion lengths reaching a maximum of 2.5 µm for intermediate PEA content (50%).
RESUMO
Organic semiconductors (OSCs) constitute a class of organic materials containing densely packed, overlapping conjugated molecular moieties that enable charge carrier transport. Their unique optical, electrical, and magnetic properties have been investigated for use in next-generation electronic devices, from roll-up displays and radiofrequency identification (RFID) to biological sensors. The organic field-effect transistor (OFET) is the key active element for many of these applications, but the high values, poor definition, and long-term instability of the threshold voltage (V(T)) in OFETs remain barriers to realization of their full potential because the power and control circuitry necessary to compensate for overvoltages and drifting set points decrease OFET practicality. The drifting phenomenon has been widely observed and generally termed "bias stress." Research on the mechanisms responsible for this poor V(T) control has revealed a strong dependence on the physical order and chemical makeup of the interfaces between OSCs and adjacent materials in the OFET architecture. In this Account, we review the state of the art for tuning OFET performance via chemical designs and physical processes that manipulate V(T). This parameter gets to the heart of OFET operation, as it determines the voltage regimes where OFETs are either ON or OFF, the basis for the logical function of the devices. One obvious way to decrease the magnitude and variability of V(T) is to work with thinner and higher permittivity gate dielectrics. From the perspective of interfacial engineering, we evaluate various methods that we and others have developed, from electrostatic poling of gate dielectrics to molecular design of substituted alkyl chains. Corona charging of dielectric surfaces, a method for charging the surface of an insulating material using a constant high-voltage field, is a brute force means of shifting the effective gate voltage applied to a gate dielectric. A gentler and more direct method is to apply surface voltage to dielectric interfaces by direct contact or postprocess biasing; these methods could also be adapted for high throughput printing sequences. Dielectric hydrophobicity is an important chemical property determining the stability of the surface charges. Functional organic monolayers applied to dielectrics, using the surface attachment chemistry made available from "self-assembled" monolayer chemistry, provide local electric fields without any biasing process at all. To the extent that the monolayer molecules can be printed, these are also suitable for high throughput processes. Finally, we briefly consider V(T) control in the context of device integration and reliability, such as the role of contact resistance in affecting this parameter.
RESUMO
Elucidating the interplay between film morphology, photophysics, and device performance of bulk heterojunction (BHJ) organic photovoltaics remains challenging. Here, we use the well-defined morphology of vapor-deposited di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane (TAPC):C60 blends to address charge generation and recombination by transient ultrafast spectroscopy. We gain relevant new insights to the functioning of dilute-donor (5% TAPC) fullerene-based BHJs compared to molecularly intermixed systems (50% TAPC). First, we show that intermolecular charge-transfer (CT) excitons in the C60 clusters of dilute BHJs rapidly localize to Frenkel excitons prior to dissociating at the donor:acceptor interface. Thus, both Frenkel and CT excitons generate photocurrent over the entire fullerene absorption range. Second, we selectively monitor interfacial and bulk C60 clusters via their electro-absorption, demonstrating an energetic gradient that assists free charge generation. Third, we identify a fast (<1 ns) recombination channel, whereby free electrons recombine with trapped holes on isolated TAPC molecules. This can harm the performance of dilute solar cells, unless the electrons are rapidly extracted in efficient devices.
RESUMO
The well known organic semiconductor C60 is attracting renewed attention due to its centimeter-long electron diffusion length and high performance of solar cells containing 95% fullerene, yet its photophysical properties remain poorly understood. We elucidate the dynamics of Frenkel and intermolecular (inter-C60) charge-transfer (CT) excitons in neat and diluted C60 films from high-quality femtosecond transient absorption (TA) measurements performed at low fluences and free from oxygen or pump-induced photodimerization. We find from preferential excitation of either species that the CT excitons give rise to a strong electro-absorption (EA) signal but are extremely short-lived. The Frenkel exciton relaxation and triplet yield strongly depend on the C60 aggregation. Finally, TA measurements on full devices with applied electric field allow us to optically monitor the dissociation of CT excitons into free charges for the first time and to demonstrate the influence of cluster size on the spectral signature of the C60 anion.
RESUMO
A sample environment to enable real-time X-ray scattering measurements to be recorded during the growth of materials by thermal evaporation in vacuum is presented. The in situ capabilities include studying microstructure development with time or during exposure to different environmental conditions, such as temperature and gas pressure. The chamber provides internal slits and a beam stop, to reduce the background scattering from the X-rays passing through the entrance and exit windows, together with highly controllable flux rates of the evaporants. Initial experiments demonstrate some of the possibilities by monitoring the growth of bathophenanthroline (BPhen), a common molecule used in organic solar cells and organic light emitting diodes, including the development of the microstructure with time and depth within the film. The results show how BPhen nanocrystal structures coarsen at room temperature under vacuum, highlighting the importance of using real time measurements to understand the as-deposited pristine film structure and its development with time. More generally, this sample environment is versatile and can be used for investigation of structure-property relationships in a wide range of vacuum deposited materials and their applications in, for example, optoelectronic devices and energy storage.
RESUMO
Lateral organic field-effect transistors (OFETs), consisting of a polystyrene (PS) polymer gate material and a pentacene organic semiconductor (OSC), were electrically polarized from bias stress during operation or in a separate charging step, and investigated with scanning Kelvin probe microscopy (SKPM) and current-voltage determinations. The charge storage inside the polymer was indicated, without any alteration of the OFET, as a surface voltage with SKPM, and correlated to a threshold voltage (VT) shift in the transistor operation. The SKPM method allows the gate material/OSC interface of the OFET to be visualized and the surface voltage variation between the two gate material interfaces to be mapped. The charge distribution for three samples was derived from the surface voltage maps using Poisson's equation. Charge densities calculated this way agreed with those derived from the VT shifts and the lateral gate-OSC capacitance. We also compared the behavior of two other polymers with PS: PS accepted the most static charge in its entire volume, poly(2-trifluoromethylstyrene) (F-PS) had the most stability to bias stress, and poly(methyl methacrylate) (PMMA) showed the most leakage current and least consistent response to static charging of the three polymers. This work provides a clear demonstration that surface voltage on a working OFET gate material can be related to the quantity of static charge responsible for bias stress and nonvolatility in OFETs.
RESUMO
Leakage currents through the gate dielectric of thin film transistors remain a roadblock to the fabrication of organic field-effect transistors (OFETs) on ultrathin dielectrics. We report the first investigation of a self-assembled monolayer (SAM) dipole as an electrostatic barrier to reduce leakage currents in n-channel OFETs fabricated on a minimal, leaky â¼10 nm SiO2 dielectric on highly doped Si. The electric field associated with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FOTS) and octyltriethoxysilane (OTS) dipolar chains affixed to the oxide surface of n-Si gave an order of magnitude decrease in gate leakage current and subthreshold leakage and a two order-of-magnitude increase in ON/OFF ratio for a naphthalenetetracarboxylic diimide (NTCDI) transistor. Identically fabricated devices on p-Si showed similarly reduced leakage and improved performance for oxides treated with the larger dipole FOTS monolayer, while OTS devices showed poorer transfer characteristics than those on bare oxide. Comparison of OFETs on both substrates revealed that relative device performance from OTS and FOTS treatments was dictated primarily by the organosilane chain and not the underlying siloxane-substrate bond. This conclusion is supported by the similar threshold voltages (VT) extrapolated for SAM-treated devices, which display positive relative VT shifts for FOTS on either substrate but opposite VT shifts for OTS treatment on n-Si and p-Si. Our results highlight the potential of dipolar SAMs as performance-enhancing layers for marginal quality dielectrics, broadening the material spectrum for low power, ultrathin organic electronics.
RESUMO
We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native oxide, NTCDI semiconductor films were deposited with thicknesses from 17 to 120 nm. Top contact Au electrodes were deposited as sources and drains. The devices showed good transistor characteristics in air with 0.1-1 µA of drain current at 0.5 V of V(G) and V(DS) and W/L of 10-20, even though channel width (250 µm) is over 1000 times the distance (20 nm) between gate and drain electrodes. The extracted capacitance-times-mobility product, an expression of the sheet transconductance, can exceed 100 nS V(-1), 2 orders of magnitude higher than typical organic transistors. The vertical low-frequency capacitance with gate voltage applied in the accumulation regime reached as high as 650 nF/cm(2), matching the harmonic sum of capacitances of the native oxide and one side chain and indicating that some gate-induced carriers in such devices are distributed among all of the NTCDI core layers, although the preponderance of the carriers are still near the gate electrode. Besides demonstrating and analyzing thickness-dependent NTCDI-based transistor behavior, we also showed <1 V detection of dinitrotoluene vapor by such transistors.