Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970402

RESUMO

INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta [Aß]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS: Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION: Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS: In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.

2.
Alzheimers Dement ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073684

RESUMO

INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS: Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.

3.
Alzheimers Dement ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193893

RESUMO

INTRODUCTION: We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS: We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS: We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION: We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS: Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.

4.
Alzheimers Dement ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193899

RESUMO

INTRODUCTION: The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS: In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS: We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION: Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS: We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.

5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731955

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder, the early detection of which is crucial for timely intervention and enrollment in clinical trials. However, the preclinical diagnosis of Alzheimer's encounters difficulties with gold-standard methods. The current definitive diagnosis of Alzheimer's still relies on expensive instrumentation and post-mortem histological examinations. Here, we explore label-free Raman spectroscopy with machine learning as an alternative to preclinical Alzheimer's diagnosis. A special feature of this study is the inclusion of patient samples from different cohorts, sampled and measured in different years. To develop reliable classification models, partial least squares discriminant analysis in combination with variable selection methods identified discriminative molecules, including nucleic acids, amino acids, proteins, and carbohydrates such as taurine/hypotaurine and guanine, when applied to Raman spectra taken from dried samples of cerebrospinal fluid. The robustness of the model is remarkable, as the discriminative molecules could be identified in different cohorts and years. A unified model notably classifies preclinical Alzheimer's, which is particularly surprising because of Raman spectroscopy's high sensitivity regarding different measurement conditions. The presented results demonstrate the capability of Raman spectroscopy to detect preclinical Alzheimer's disease for the first time and offer invaluable opportunities for future clinical applications and diagnostic methods.


Assuntos
Doença de Alzheimer , Análise Espectral Raman , Análise Espectral Raman/métodos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Humanos , Aprendizado de Máquina , Masculino , Feminino , Biomarcadores/líquido cefalorraquidiano , Idoso , Diagnóstico Precoce
6.
Mol Psychiatry ; 27(4): 1990-1999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35173266

RESUMO

Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/genética , Biomarcadores , Proteína 1 Semelhante à Quitinase-3/genética , Proteínas de Ligação a DNA , Ácido Ditionitrobenzoico , Humanos , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular , Neurogranina/genética , Fatores de Transcrição , Proteínas tau
7.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790009

RESUMO

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Multiômica , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
8.
Alzheimers Dement ; 19(6): 2317-2331, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464806

RESUMO

INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Exoma/genética , Estudos de Associação Genética , Fenótipo , Biomarcadores
9.
Alzheimers Dement ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35698882

RESUMO

BACKGROUND: Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS: Individuals were classified based on CSF amyloid beta (Aß)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS: A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION: The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.

10.
Brain ; 143(12): 3776-3792, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439986

RESUMO

Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer's disease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization. In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between Alzheimer's disease (defined as having abnormal amyloid, n = 425) and controls (defined as having normal CSF amyloid and tau and normal cognition, n = 127). Using these proteins for data-driven clustering, we identified three robust pathophysiological Alzheimer's disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activation; and (iii) blood-brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic analyses showed that all subtypes had an excess of genetic risk for Alzheimer's disease (all P > 0.01). Additional pathological comparisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer's disease pathology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect Alzheimer's disease heterogeneity. Compared to controls, all non-demented Alzheimer's disease individuals had increased risk of showing clinical progression (all P < 0.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P = 0.01), and subtype 3 at trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P = 0.06). Together, these results demonstrate the value of CSF proteomics in studying the biological heterogeneity in Alzheimer's disease patients, and suggest that subtypes may require tailored therapy.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/classificação , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/genética , Ácido Aspártico Endopeptidases/líquido cefalorraquidiano , Ácido Aspártico Endopeptidases/genética , Barreira Hematoencefálica/patologia , Análise por Conglomerados , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/genética , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/genética , Proteômica , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
11.
Int J Geriatr Psychiatry ; 36(7): 1037-1049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33792089

RESUMO

OBJECTIVES: We studied a sample of cognitively unimpaired individuals, with and without subjective cognitive decline (SCD), in order to investigate accelerated long-term forgetting (ALF) and to explore the relationships between objective and subjective cognitive performance and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers. METHODS: Fifty-two individuals were included and SCD was quantified through the Subjective Cognitive Decline Questionnaire (SCD-Q), using its validated cutoff to classify participants as Low SCD-Q (n = 21) or High SCD-Q (n = 31). These groups were further subdivided according to the presence or absence of abnormal levels of CSF Aß42 . Objective cognitive performance was assessed with the Ancient Farming Equipment Test (AFE-T), a new highly-demanding test that calls for acquisition and retention of novel object/name pairs and allows measuring ALF over a 6-month period. RESULTS: The High SCD-Q group showed a significantly higher free forgetting rate at 3 months compared to the Low SCD-Q (F [1,44] = 4.72; p < 0.05). When stratifying by amyloid status, High SCD-Q/Aß+ showed a significantly lower performance than High SCD-Q/Aß-on the final free and cued learning scores (F [1,27] = 6.44, p < 0.05 and F [1,27] = 7.51, p < 0.05, respectively), the 1-week free and cued recall (F [1,24] = 4.49; p < 0.05 and F [1,24] = 7.10; p < 0.01, respectively), the 1-week cued forgetting rate (F [1,24] = 5.13; p < 0.05), and the 3-month cued recall (F [1,24] = 4.27; p < 0.05). Linear regression analyses showed that higher SCD-Q scores were associated with higher forgetting rates on the AFE-T (ß = -0.212; p < 0.05). CONCLUSIONS: It is possible to detect ALF in individuals with high SCD ratings, appearing especially in those with abnormal CSF Aß42 levels. Both in research and the clinical field, there is an increasing need of using more demanding cognitive measures, such as the AFE-T, for identifying and tracking the earliest cognitive changes in these populations.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Testes Neuropsicológicos
12.
Mol Cell Proteomics ; 18(3): 546-560, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606734

RESUMO

A biomarker of synapse loss, an early event in Alzheimer's disease (AD) pathophysiology that precedes neuronal death and symptom onset, would be a much-needed prognostic biomarker. With direct access to the brain interstitial fluid, the cerebrospinal fluid (CSF) is a potential source of synapse-derived proteins. In this study, we aimed to identify and validate novel CSF biomarkers of synapse loss in AD. Discovery: Combining shotgun proteomics of the CSF with an exhaustive search of the literature and public databases, we identified 251 synaptic proteins, from which we selected 22 for further study. Verification: Twelve proteins were discarded because of poor detection by Selected Reaction Monitoring (SRM). We confirmed the specific expression of 9 of the remaining proteins (Calsynytenin-1, GluR2, GluR4, Neurexin-2A, Neurexin-3A, Neuroligin-2, Syntaxin-1B, Thy-1, Vamp-2) at the human synapse using Array Tomography microscopy and biochemical fractionation methods. Exploration: Using SRM, we monitored these 9 synaptic proteins (20 peptides) in a cohort of CSF from cognitively normal controls and subjects in the pre-clinical and clinical AD stages (n = 80). Compared with controls, peptides from 8 proteins were elevated 1.3 to 1.6-fold (p < 0.04) in prodromal AD patients. Validation: Elevated levels of a GluR4 peptide at the prodromal stage were replicated (1.3-fold, p = 0.04) in an independent cohort (n = 60). Moreover, 7 proteins were reduced at preclinical stage 1 (0.6 to 0.8-fold, p < 0.04), a finding that was replicated (0.7 to 0.8-fold, p < 0.05) for 6 proteins in a third cohort (n = 38). In a cross-cohort meta-analysis, 6 synaptic proteins (Calsyntenin-1, GluR4, Neurexin-2A, Neurexin-3A, Syntaxin-1B and Thy-1) were reduced 0.8-fold (p < 0.05) in preclinical AD, changes that precede clinical symptoms and CSF markers of neurodegeneration. Therefore, these proteins could have clinical value for assessing disease progression, especially in preclinical stages of AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Proteômica/métodos , Sinapses/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Autopsia , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/líquido cefalorraquidiano , Proteínas de Ligação ao Cálcio/metabolismo , Diagnóstico Precoce , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/metabolismo , Sintomas Prodrômicos , Prognóstico , Receptores de AMPA/metabolismo , Sintaxina 1/líquido cefalorraquidiano , Sintaxina 1/metabolismo , Antígenos Thy-1/líquido cefalorraquidiano , Antígenos Thy-1/metabolismo
13.
Alzheimers Dement ; 17(10): 1628-1640, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991015

RESUMO

INTRODUCTION: Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. METHODS: We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. RESULTS: We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. DISCUSSION: Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.


Assuntos
Doença de Alzheimer/genética , Biomarcadores/líquido cefalorraquidiano , Estudo de Associação Genômica Ampla , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Idoso , Proteína 1 Semelhante à Quitinase-3/genética , Feminino , Humanos , Masculino , Proteínas de Neurofilamentos/genética , Neurogranina/líquido cefalorraquidiano
14.
Alzheimers Dement ; 17(9): 1452-1464, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33792144

RESUMO

INTRODUCTION: This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis. METHODS: Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively. RESULTS: Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis. DISCUSSION: Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Proteínas Sanguíneas , Proteômica , Proteínas tau/sangue , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Apolipoproteína E4/sangue , Apolipoproteína E4/genética , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Alzheimers Dement ; 16(7): 1078-1094, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32627328

RESUMO

Reducing the risk of dementia can halt the worldwide increase of affected people. The multifactorial and heterogeneous nature of late-onset dementia, including Alzheimer's disease (AD), indicates a potential impact of multidomain lifestyle interventions on risk reduction. The positive results of the landmark multidomain Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) support such an approach. The World-Wide FINGERS (WW-FINGERS), launched in 2017 and including over 25 countries, is the first global network of multidomain lifestyle intervention trials for dementia risk reduction and prevention. WW-FINGERS aims to adapt, test, and optimize the FINGER model to reduce risk across the spectrum of cognitive decline-from at-risk asymptomatic states to early symptomatic stages-in different geographical, cultural, and economic settings. WW-FINGERS aims to harmonize and adapt multidomain interventions across various countries and settings, to facilitate data sharing and analysis across studies, and to promote international joint initiatives to identify globally implementable and effective preventive strategies.


Assuntos
Doença de Alzheimer/prevenção & controle , Demência/prevenção & controle , Terapia por Exercício , Estilo de Vida , Ensaios Clínicos como Assunto , Cognição/fisiologia , Humanos , Projetos de Pesquisa , Comportamento de Redução do Risco
17.
Alzheimers Dement ; 15(6): 742-753, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30967340

RESUMO

INTRODUCTION: Within-person trajectories of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) are not well defined. METHODS: We included 467 subjects from the BIOMARKAPD study with at least two serial CSF samples. Diagnoses were subjective cognitive decline (n = 75), mild cognitive impairment (n = 128), and AD dementia (n = 110), and a group of cognitively unimpaired subjects (n = 154) were also included. We measured baseline and follow-up CSF levels of total tau (t-tau), phosphorylated tau (p-tau), YKL-40, and neurofilament light (NfL). Median CSF sampling interval was 2.1 years. RESULTS: CSF levels of t-tau, p-tau, NfL, and YKL-40 were 2% higher per each year of baseline age in controls (P <.001). In AD, t-tau levels were 1% lower (P <.001) and p-tau levels did not change per each year of baseline age. Longitudinally, only NfL (P <.001) and YKL-40 (P <.02) increased during the study period. DISCUSSION: All four CSF biomarkers increase with age, but this effect deviates in AD for t-tau and p-tau.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Apolipoproteínas E/genética , Proteína 1 Semelhante à Quitinase-3 , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Fragmentos de Peptídeos , Fosforilação
18.
Alzheimers Dement ; 15(5): 644-654, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30853464

RESUMO

INTRODUCTION: We investigated relations between amyloid-ß (Aß) status, apolipoprotein E (APOE) ε4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). METHODS: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with Aß status (Aß- vs. Aß+), clinical diagnosis APOE ε4 carriership, baseline cognition, and change in cognition. RESULTS: Ng and T-tau distinguished between Aß+ from Aß- individuals in each clinical group, whereas NFL and YKL-40 were associated with Aß+ in nondemented individuals only. APOE ε4 carriership did not influence NFL, Ng, and YKL-40 in Aß+ individuals. NFL was the best predictor of cognitive decline in Aß+ individuals across the cognitive spectrum. DISCUSSION: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos
19.
Alzheimers Dement ; 15(11): 1478-1488, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31495601

RESUMO

INTRODUCTION: Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins. METHODS: 4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid. RESULTS: A panel of proteins (n = 44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve = 0.78) and the replication group (area under the curve = 0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization. DISCUSSION: The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.


Assuntos
Doença de Alzheimer , Amiloide/metabolismo , Biomarcadores/sangue , Encéfalo/metabolismo , Proteômica , Fatores Etários , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Alzheimers Dement ; 15(6): 776-787, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31047856

RESUMO

INTRODUCTION: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a "Holy Grail" of AD research and intensively sought; however, there are no well-established plasma markers. METHODS: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. RESULTS: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). DISCUSSION: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation.


Assuntos
Doença de Alzheimer , Biomarcadores/sangue , Disfunção Cognitiva , Inflamação , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Fator B do Complemento , Fator H do Complemento , Humanos , Internacionalidade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA