Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2204752119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994673

RESUMO

p38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ-/-) cells and tissues without affecting TPL2 messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels. p38γ/p38δ interacts with the TPL2/A20 Binding Inhibitor of NF-κB2 (ABIN2)/Nuclear Factor κB1p105 (NF-κB1p105) complex, increasing TPL2 protein stability. Additionally, p38γ/p38δ regulates TPL2 mRNA translation by modulating the repressor function of TPL2 3' Untranslated region (UTR) mediated by its association with aconitase-1 (ACO1). ACO1 overexpression in wild-type cells increases the translational repression induced by TPL2 3'UTR and severely decreases TPL2 protein levels. p38δ binds to ACO1, and p38δ expression in p38γ/δ-/- cells fully restores TPL2 protein to wild-type levels by reducing the translational repression of TPL2 mRNA. This study reveals a unique mechanism of posttranscriptional regulation of TPL2 expression, which given its central role in innate immune response, likely has great relevance in physiopathology.


Assuntos
Aconitato Hidratase , MAP Quinase Quinase Quinases , Proteína Quinase 12 Ativada por Mitógeno , Proteína Quinase 13 Ativada por Mitógeno , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , RNA Mensageiro/genética
2.
Cell Mol Life Sci ; 79(9): 490, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987821

RESUMO

Selective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5' terminal oligopyrimidine tracts (5'TOP) and the histone stem-loop (hSL) structure at the 3' end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5  promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.


Assuntos
Histonas , RNA , Histonas/genética , Histonas/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , RNA Mensageiro/metabolismo
3.
Nucleic Acids Res ; 48(2): 788-801, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799608

RESUMO

In all organisms, a selected type of proteins accomplishes critical roles in cellular processes that govern gene expression. The multifunctional protein Gemin5 cooperates in translation control and ribosome binding, besides acting as the RNA-binding protein of the survival of motor neuron (SMN) complex. While these functions reside on distinct domains located at each end of the protein, the structure and function of the middle region remained unknown. Here, we solved the crystal structure of an extended tetratricopeptide (TPR)-like domain in human Gemin5 that self-assembles into a previously unknown canoe-shaped dimer. We further show that the dimerization module is functional in living cells driving the interaction between the viral-induced cleavage fragment p85 and the full-length Gemin5, which anchors splicing and translation members. Disruption of the dimerization surface by a point mutation in the TPR-like domain prevents this interaction and also abrogates translation enhancement induced by p85. The characterization of this unanticipated dimerization domain provides the structural basis for a role of the middle region of Gemin5 as a central hub for protein-protein interactions.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN/genética , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas do Complexo SMN/química
4.
RNA Biol ; 18(sup1): 496-506, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424823

RESUMO

Gemin5 is a multifaceted RNA-binding protein that comprises distinct structural domains, including a WD40 and TPR-like for which the X-ray structure is known. In addition, the protein contains a non-canonical RNA-binding domain (RBS1) towards the C-terminus. To understand the RNA binding features of the RBS1 domain, we have characterized its structural characteristics by solution NMR linked to RNA-binding activity. Here we show that a short version of the RBS1 domain that retains the ability to interact with RNA is predominantly unfolded even in the presence of RNA. Furthermore, an exhaustive mutational analysis indicates the presence of an evolutionarily conserved motif enriched in R, S, W, and H residues, necessary to promote RNA-binding via π-π interactions. The combined results of NMR and RNA-binding on wild-type and mutant proteins highlight the importance of aromatic and arginine residues for RNA recognition by RBS1, revealing that the net charge and the π-amino acid density of this region of Gemin5 are key factors for RNA recognition.


Assuntos
Arginina/metabolismo , Motivos de Ligação ao RNA , RNA/química , RNA/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Arginina/química , Arginina/genética , Sítios de Ligação , Humanos , Modelos Moleculares , Ligação Proteica , RNA/genética , Proteínas do Complexo SMN/genética , Homologia de Sequência , Triptofano/química , Triptofano/genética
5.
Bioessays ; 41(4): e1800241, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30919488

RESUMO

The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.


Assuntos
Biossíntese de Proteínas , RNA/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Domínios Proteicos , RNA/química
6.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867300

RESUMO

Infection by viruses depends on a balance between capsid stability and dynamics. This study investigated biologically and biotechnologically relevant aspects of the relationship in foot-and-mouth disease virus (FMDV) between capsid structure and thermostability and between thermostability and infectivity. In the FMDV capsid, a substantial number of amino acid side chains at the interfaces between pentameric subunits are charged at neutral pH. Here a mutational analysis revealed that the essential role for virus infection of most of the 8 tested charged groups is not related to substantial changes in capsid protein expression or processing or in capsid assembly or stability against a thermally induced dissociation into pentamers. However, the positively charged side chains of R2018 and H3141, located at the interpentamer interfaces close to the capsid 2-fold symmetry axes, were found to be critical both for virus infectivity and for keeping the capsid in a state of weak thermostability. A charge-restoring substitution (N2019H) that was repeatedly fixed during amplification of viral genomes carrying deleterious mutations reverted both the lethal and capsid-stabilizing effects of the substitution H3141A, leading to a double mutant virus with close to normal infectivity and thermolability. H3141A and other thermostabilizing substitutions had no detectable effect on capsid resistance to acid-induced dissociation into pentamers. The results suggest that FMDV infectivity requires limited local stability around the 2-fold axes at the interpentamer interfaces of the capsid. The implications for the mechanism of genome uncoating in FMDV and the development of thermostabilized vaccines against foot-and-mouth disease are discussed.IMPORTANCE This study provides novel insights into the little-known structural determinants of the balance between thermal stability and instability in the capsid of foot-and-mouth disease virus and into the relationship between capsid stability and virus infectivity. The results provide new guidelines for the development of thermostabilized empty capsid-based recombinant vaccines against foot-and-mouth disease, one of the economically most important animal diseases worldwide.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Substituição de Aminoácidos/genética , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Linhagem Celular , Análise Mutacional de DNA , Febre Aftosa/virologia , Vírus da Febre Aftosa/patogenicidade , Genoma Viral/genética , Temperatura Alta , Modelos Moleculares , Temperatura , Vírion/metabolismo
7.
PLoS Pathog ; 14(6): e1007135, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29958302

RESUMO

The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage. When LGP2 and Lpro were co-expressed, cleavage products were observed in an Lpro dose-dependent manner while co-expression with a catalytically inactive Lpro mutant had no effect on LGP2 levels or pattern. We further show that Lpro localizes and immunoprecipitates with LGP2 in transfected cells supporting their interaction within the cytoplasm. Evidence of LGP2 proteolysis was also detected during FMDV infection. Moreover, the inhibitory effect of LGP2 overexpression on FMDV growth observed was reverted when Lpro was co-expressed, concomitant with lower levels of IFN-ß mRNA and antiviral activity in those cells. The Lpro target site in LGP2 was identified as an RGRAR sequence in a conserved helicase motif whose replacement to EGEAE abrogated LGP2 cleavage by Lpro. Taken together, these data suggest that LGP2 cleavage by the Leader protease of aphthoviruses may represent a novel antagonistic mechanism for immune evasion.


Assuntos
Endopeptidases/metabolismo , Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , RNA Helicases/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Endopeptidases/genética , Febre Aftosa/imunologia , Febre Aftosa/patologia , Vírus da Febre Aftosa/enzimologia , Células HEK293 , Humanos , RNA Helicases/genética , RNA Helicases/imunologia , Células Vero
8.
RNA Biol ; 17(9): 1331-1341, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32476560

RESUMO

Regulation of protein synthesis is an essential step of gene expression. This process is under the control of cis-acting RNA elements and trans-acting factors. Gemin5 is a multifunctional RNA-binding protein organized in distinct domains. The protein bears a non-canonical RNA-binding site, designated RBS1, at the C-terminal end. Among other cellular RNAs, the RBS1 region recognizes a sequence located within the coding region of Gemin5 mRNA, termed H12. Expression of RBS1 stimulates translation of RNA reporters carrying the H12 sequence, counteracting the negative effect of Gemin5 on global protein synthesis. A computational analysis of RBS1 protein and H12 RNA variability across the evolutionary scale predicts coevolving pairs of amino acids and nucleotides. RBS1 footprint and gel-shift assays indicated a positive correlation between the identified coevolving pairs and RNA-protein interaction. The coevolving residues of RBS1 contribute to the recognition of stem-loop SL1, an RNA structural element of H12 that contains the coevolving nucleotides. Indeed, RBS1 proteins carrying substitutions on the coevolving residues P1297 or S1299S1300, drastically reduced SL1-binding. Unlike the wild type RBS1 protein, expression of these mutant proteins in cells failed to enhance translation stimulation of mRNA reporters carrying the H12 sequence. Therefore, the PXSS motif within the RBS1 domain of Gemin5 and the RNA structural motif SL1 of its mRNA appears to play a key role in fine-tuning the expression level of this essential protein.


Assuntos
Sítios de Ligação , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , RNA/química , Proteínas do Complexo SMN/química , Sequência de Aminoácidos , Evolução Biológica , Sequência Conservada , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/metabolismo
9.
Nucleic Acids Res ; 46(14): 7339-7353, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29771365

RESUMO

Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem-loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem-loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.


Assuntos
Retroalimentação Fisiológica , Biossíntese de Proteínas , RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Sítios de Ligação/genética , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Ligação Proteica , Domínios Proteicos , RNA/química , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN
10.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485878

RESUMO

RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The disfunction of RBPs is frequently the cause of cell disorders which are incompatible with life. Furthermore, the ordered assembly of RBPs and RNAs in ribonucleoprotein (RNP) particles determines the function of biological complexes, as illustrated by the survival of the motor neuron (SMN) complex. Defects in the SMN complex assembly causes spinal muscular atrophy (SMA), an infant invalidating disease. This multi-subunit chaperone controls the assembly of small nuclear ribonucleoproteins (snRNPs), which are the critical components of the splicing machinery. However, the functional and structural characterization of individual members of the SMN complex, such as SMN, Gemin3, and Gemin5, have accumulated evidence for the additional roles of these proteins, unveiling their participation in other RNA-mediated events. In particular, Gemin5 is a multidomain protein that comprises tryptophan-aspartic acid (WD) repeat motifs at the N-terminal region, a dimerization domain at the middle region, and a non-canonical RNA-binding domain at the C-terminal end of the protein. Beyond small nuclear RNA (snRNA) recognition, Gemin5 interacts with a selective group of mRNA targets in the cell environment and plays a key role in reprogramming translation depending on the RNA partner and the cellular conditions. Here, we review recent studies on the SMN complex, with emphasis on the individual components regarding their involvement in cellular processes critical for cell survival.


Assuntos
Neurônios Motores/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Animais , Humanos , Neurônios Motores/patologia , Biossíntese de Proteínas , Multimerização Proteica , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribossomos/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/genética
11.
Nucleic Acids Res ; 45(3): 1416-1432, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180318

RESUMO

The genome of RNA viruses folds into 3D structures that include long-range RNA­RNA interactions relevant to control critical steps of the viral cycle. In particular, initiation of translation driven by the IRES element of foot-and-mouth disease virus is stimulated by the 3΄UTR. Here we sought to investigate the RNA local flexibility of the IRES element and the 3΄UTR in living cells. The SHAPE reactivity observed in vivo showed statistically significant differences compared to the free RNA, revealing protected or exposed positions within the IRES and the 3΄UTR. Importantly, the IRES local flexibility was modified in the presence of the 3΄UTR, showing significant protections at residues upstream from the functional start codon. Conversely, presence of the IRES element in cis altered the 3΄UTR local flexibility leading to an overall enhanced reactivity. Unlike the reactivity changes observed in the IRES element, the SHAPE differences of the 3΄UTR were large but not statistically significant, suggesting multiple dynamic RNA interactions. These results were supported by covariation analysis, which predicted IRES-3΄UTR conserved helices in agreement with the protections observed by SHAPE probing. Mutational analysis suggested that disruption of one of these interactions could be compensated by alternative base pairings, providing direct evidences for dynamic long-range interactions between these distant elements of the viral genome.


Assuntos
Regiões 3' não Traduzidas , Vírus da Febre Aftosa/genética , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Animais , Pareamento de Bases , Sequência de Bases , Linhagem Celular , Códon de Iniciação , Simulação por Computador , Vírus da Febre Aftosa/metabolismo , Genoma Viral , Sítios Internos de Entrada Ribossomal , Modelos Moleculares , Mutagênese , Estabilidade de RNA/genética
12.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925703

RESUMO

Improvements in Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology and DNA sequencing methods have led to the identification of a large number of active nucleic acid molecules after any aptamer selection experiment. As a result, the search for the fittest aptamers has become a laborious and time-consuming task. Herein, we present an optimized approach for the label-free characterization of DNA and RNA aptamers in parallel. The developed method consists in an Enzyme-Linked OligoNucleotide Assay (ELONA) coupled to either real-time quantitative PCR (qPCR, for DNA aptamers) or reverse transcription qPCR (RTqPCR, for RNA aptamers), which allows the detection of aptamer-target interactions in the high femtomolar range. We have applied this methodology to the affinity analysis of DNA and RNA aptamers selected against the poly(C)-binding protein 2 (PCBP-2). In addition, we have used ELONA-(RT)qPCR to quantify the dissociation constant (Kd) and maximum binding capacity (Bmax) of 16 high affinity DNA and RNA aptamers. The Kd values of the high affinity DNA aptamers were compared to those derived from colorimetric ELONA performed in parallel. Additionally, Electrophoretic Mobility Shift Assays (EMSA) were used to confirm the binding of representative PCBP-2-specific RNA aptamers in solution. We propose this ELONA-(RT)qPCR approach as a general strategy for aptamer characterization, with a broad applicability in biotechnology and biomedicine.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Bioensaio/métodos , DNA/metabolismo , Oligonucleotídeos/metabolismo , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Técnica de Seleção de Aptâmeros/métodos , Calibragem , DNA/química , Cinética , Conformação de Ácido Nucleico , RNA/química , Proteínas de Ligação a RNA , Soluções
13.
RNA ; 22(3): 330-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26759454

RESUMO

RNA function is determined by its structural organization. The RNA structure consists of the combination of distinct secondary structure motifs connected by junctions that play an essential role in RNA folding. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probing is an established methodology to analyze the secondary structure of long RNA molecules in solution, which provides accurate data about unpaired nucleotides. However, the residues located at the junctions of RNA structures usually remain undetected. Here we report an RNA probing method based on the use of a novel open-paddlewheel diruthenium (OPW-Ru) compound [Ru2Cl2(µ-DPhF)3(DMSO)] (DPhF = N,N'-diphenylformamidinate). This compound has four potential coordination sites in a singular disposition to establish covalent bonds with substrates. As a proof of concept, we have analyzed the reactivity of OPW-Ru toward RNA using two viral internal ribosome entry site (IRES) elements whose function depends on the structural organization of the molecule. Our study suggests that the compound OPW-Ru preferentially attacks at positions located one or two nucleotides away from junctions or bulges of the RNA structure. The OPW-Ru fingerprinting data differ from that obtained by other chemical reagents and provides new information about RNA structure features.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Compostos de Rutênio/química , Sequência de Bases , Cristalografia por Raios X , Dados de Sequência Molecular , Sondas RNA
14.
Nucleic Acids Res ; 44(17): 8335-51, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27507887

RESUMO

RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribossomos/metabolismo , Extratos Celulares , Cromatografia de Afinidade , Células HEK293 , Humanos , Espectrometria de Massas , Modelos Biológicos , Polirribossomos/metabolismo , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos , Proteínas do Complexo SMN
15.
Bioinformatics ; 32(12): i360-i368, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307638

RESUMO

MOTIVATION: RNA thermometers (RNATs) are cis-regulatory elements that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation. RESULTS: Solving the 2-temperature inverse folding problem is critical for RNAT engineering. Here we introduce RNAiFold2T, the first Constraint Programming (CP) and Large Neighborhood Search (LNS) algorithms to solve this problem. Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and genetic algorithm) inverse folding show that our software generates two orders of magnitude more solutions, thus allowing ample exploration of the space of solutions. Subsequently, solutions can be prioritized by computing various measures, including probability of target structure in the ensemble, melting temperature, etc. Using this strategy, we rationally designed two thermosensor internal ribosome entry site (thermo-IRES) elements, whose normalized cap-independent translation efficiency is approximately 50% greater at 42 °C than 30 °C, when tested in reticulocyte lysates. Translation efficiency is lower than that of the wild-type IRES element, which on the other hand is fully resistant to temperature shift-up. This appears to be the first purely computational design of functional RNA thermoswitches, and certainly the first purely computational design of functional thermo-IRES elements. AVAILABILITY: RNAiFold2T is publicly available as part of the new release RNAiFold3.0 at https://github.com/clotelab/RNAiFold and http://bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as well. The software is written in C ++ and uses OR-Tools CP search engine. CONTACT: clote@bc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Dobramento de RNA , Algoritmos , Sequência de Bases , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , RNA , Software
16.
Methods ; 91: 3-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26142759

RESUMO

Translation control often takes place through the mRNA untranslated regions, involving direct interactions with RNA-binding proteins (RBPs). Internal ribosome entry site elements (IRESs) are cis-acting RNA regions that promote translation initiation using a cap-independent mechanism. A subset of positive-strand RNA viruses harbor IRESs as a strategy to ensure efficient viral protein synthesis. IRESs are organized in modular structural domains with a division of functions. However, viral IRESs vary in nucleotide sequence, secondary RNA structure, and transacting factor requirements. Therefore, in-depth studies are needed to understand how distinct types of viral IRESs perform their function. In this review we describe methods to isolate and identify RNA-binding proteins important for IRES activity, and to study the impact of RNA structure and RNA-protein interactions on IRES activity.


Assuntos
Sítios Internos de Entrada Ribossomal , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Cromatografia de Afinidade/métodos , Eletroforese Capilar , Espectrometria de Massas , Conformação de Ácido Nucleico , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação
17.
Nucleic Acids Res ; 42(9): 5742-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598255

RESUMO

Ribonucleic acid (RNA)-binding proteins are key players of gene expression control. We have shown that Gemin5 interacts with internal ribosome entry site (IRES) elements and modulates initiation of translation. However, little is known about the RNA-binding sites of this protein. Here we show that the C-terminal region of Gemin5 bears two non-canonical bipartite RNA-binding sites, encompassing amino acids 1297-1412 (RBS1) and 1383-1508 (RBS2). While RBS1 exhibits greater affinity for RNA than RBS2, it does not affect IRES-dependent translation in G5-depleted cells. In solution, the RBS1 three-dimensional structure behaves as an ensemble of flexible conformations rather than having a defined tertiary structure. However, expression of the polypeptide G51383-1508, bearing the low RNA-binding affinity RBS2, repressed IRES-dependent translation. A comparison of the RNA-binding capacity and translation control properties of constructs expressed in mammalian cells to that of the Gemin5 proteolysis products observed in infected cells reveals that non-repressive products accumulated during infection while the repressor polypeptide is not stable. Taken together, our results define the low affinity RNA-binding site as the minimal element of the protein being able to repress internal initiation of translation.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Ribonucleoproteínas Nucleares Pequenas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Vírus da Febre Aftosa/genética , Inativação Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Viral/química , RNA Viral/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN
18.
J Virol ; 88(20): 12098-111, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25122776

RESUMO

Passage of hepatitis C virus (HCV) in human hepatoma cells resulted in populations that displayed partial resistance to alpha interferon (IFN-α), telaprevir, daclatasvir, cyclosporine, and ribavirin, despite no prior exposure to these drugs. Mutant spectrum analyses and kinetics of virus production in the absence and presence of drugs indicate that resistance is not due to the presence of drug resistance mutations in the mutant spectrum of the initial or passaged populations but to increased replicative fitness acquired during passage. Fitness increases did not alter host factors that lead to shutoff of general host cell protein synthesis and preferential translation of HCV RNA. The results imply that viral replicative fitness is a mechanism of multidrug resistance in HCV. Importance: Viral drug resistance is usually attributed to the presence of amino acid substitutions in the protein targeted by the drug. In the present study with HCV, we show that high viral replicative fitness can confer a general drug resistance phenotype to the virus. The results exclude the possibility that genomes with drug resistance mutations are responsible for the observed phenotype. The fact that replicative fitness can be a determinant of multidrug resistance may explain why the virus is less sensitive to drug treatments in prolonged chronic HCV infections that favor increases in replicative fitness.


Assuntos
Farmacorresistência Viral/genética , Hepacivirus/efeitos dos fármacos , Replicação Viral , Antivirais/farmacologia , Western Blotting , Linhagem Celular Tumoral , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Inoculações Seriadas
19.
RNA Biol ; 12(5): 555-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775053

RESUMO

The internal ribosome entry site (IRES) element located at the 5'untranslated genomic region of various RNA viruses mediates cap-independent initiation of translation. Picornavirus IRES activity is highly dependent on both its structural organization and its interaction with host factors. Small molecules able to interfere with RNA function are valuable candidates for antiviral agents. Here we show that a small molecule based on benzimidazole (IRAB) inhibited foot-and-mouth disease virus (FMDV) IRES-dependent protein synthesis in cells transfected with infectious RNA leading to a decrease of the virus titer, which was higher than that induced by a structurally related benzimidazole derivative. Interestingly, IRAB preferentially inhibited IRES-dependent translation in cell free systems in a dose-dependent manner. RNA structural analysis by SHAPE demonstrated an increased local flexibility of the IRES structure upon incubation with IRAB, which affected 3 stem-loops (SL) of domain 3. Fluorescence binding assays conducted with individual aminopurine-labeled oligoribonucleotides indicated that the SL3A binds IRAB (EC50 18 µM). Taken together, the results derived from SHAPE reactivity and fluorescence binding assays suggested that the target site of IRAB within the FMDV IRES might be a folded RNA structure that involves the entire apical region of domain 3. Our data suggest that the conformational changes induced by this compound on a specific region of the IRES structure which is essential for its activity is, at least in part, responsible for the reduced IRES efficiency observed in cell free lysates and, particularly, in RNA-transfected cells.


Assuntos
Vírus da Febre Aftosa/genética , Sítios Internos de Entrada Ribossomal/genética , Biossíntese de Proteínas , RNA Viral/genética , Sequência de Bases , Benzimidazóis/química , Benzimidazóis/farmacologia , Sistema Livre de Células , Fluorescência , Vírus da Febre Aftosa/efeitos dos fármacos , Vírus da Febre Aftosa/crescimento & desenvolvimento , Genoma Viral , Radical Hidroxila/metabolismo , Ligantes , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas/efeitos dos fármacos , RNA Viral/química , Solventes
20.
Nucleic Acids Res ; 41(2): 1017-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23221641

RESUMO

Gene expression control largely depends on ribonucleoprotein complexes regulating mRNA translation. Initiation of translation in mRNAs that overcome cap-dependent translation inhibition is often driven by internal ribosome entry site (IRES) elements, whose activity is regulated by multifunctional RNA-binding factors. Here we show that Gemin5 interacts preferentially with a specific domain of a viral IRES consisting of a hairpin flanked by A/U/C-rich sequences. RNA-binding assays using purified proteins revealed that Gemin5-IRES interaction depends on the C-terminal region of the protein. Consistent with this novel finding, the C-terminal region of Gemin5, but not the N-terminal region, impaired translation. Furthermore, RNA selective 2'hydroxyl acylation analysed by primer extension (SHAPE) reactivity demonstrated that addition of purified Gemin5 to IRES mRNA induced the specific protection of residues around the hairpin of the IRES element. We further demonstrate that Gemin5 out-competed SHAPE reactivity variations induced by the IRES-binding factor PTB, leading to a local conformational change in the IRES structure. Together, our data unveil the inhibitory mechanism of Gemin5 on IRES-mediated translation.


Assuntos
Regulação para Baixo , Biossíntese de Proteínas , Sequências Reguladoras de Ácido Ribonucleico , Proteínas do Complexo SMN/metabolismo , Sequência de Bases , Sítios de Ligação , Vírus da Febre Aftosa/genética , Dados de Sequência Molecular , Mutagênese , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Proteínas do Complexo SMN/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA