Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 145(25): 13663-13673, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37329320

RESUMO

The development of photo-responsive ferroelectrics whose polarization may be remotely controlled by optical means is of fundamental importance for basic research and technological applications. Herein, we report the design and synthesis of a new metal-nitrosyl ferroelectric crystal (DMA)(PIP)[Fe(CN)5(NO)] (1) (DMA = dimethylammonium, PIP = piperidinium) with potential phototunable polarization via a dual-organic-cation molecular design strategy. Compared to the parent non-ferroelectric (MA)2[Fe(CN)5(NO)] (MA = methylammonium) material with a phase transition at 207 K, the introduction of larger dual organic cations both lowers the crystal symmetry affording robust ferroelectricity and increases the energy barrier of molecular motions, endowing 1 with a large polarization of up to 7.6 µC cm-2 and a high Curie temperature (Tc) of 316 K. Infrared spectroscopy shows that the reversible photoisomerization of the nitrosyl ligand is accomplished by light irradiation. Specifically, the ground state with the N-bound nitrosyl ligand conformation can be reversibly switched to both the metastable state I (MSI) with isonitrosyl conformation and the metastable state II (MSII) with side-on nitrosyl conformation. Quantum chemistry calculations suggest that the photoisomerization significantly changes the dipole moment of the [Fe(CN)5(NO)]2- anion, thus leading to three ferroelectric states with different values of macroscopic polarization. Such optical accessibility and controllability of different ferroelectric states via photoinduced nitrosyl linkage isomerization open up a new and attractive route to optically controllable macroscopic polarization.

2.
Inorg Chem ; 62(20): 7834-7842, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37156094

RESUMO

The incorporation of electroactive organic building blocks into coordination polymers (CPs) and metal-organic frameworks (MOFs) offers a promising approach for adding electronic functionalities such as redox activity, electrical conductivity, and luminescence to these materials. The incorporation of perylene moieties into CPs is, in particular, of great interest due to its potential to introduce both luminescence and redox properties. Herein, we present an innovative synthesis method for producing a family of highly crystalline and stable coordination polymers based on perylene-3,4,9,10-tetracarboxylate (PTC) and various transition metals (TMs = Co, Ni, and Zn) with an isostructural framework. The crystal structure of the PTC-TM CPs, obtained through powder X-ray diffraction and Rietveld refinement, provides valuable insights into the composition and organization of the building blocks within the CP. The perylene moieties are arranged in a herringbone pattern, with short distances between adjacent ligands, which contributes to the dense and highly organized framework of the material. The photophysical properties of PTC-Zn were thoroughly studied, revealing the presence of J-aggregation-based and monomer-like emission bands. These bands were experimentally identified, and their behavior was further understood through the use of quantum-chemical calculations. Solid-state cyclic voltammetry experiments on PTC-TMs showed that the perylene redox properties are maintained within the CP framework. This study presents a simple and effective approach for synthesizing highly stable and crystalline perylene-based CPs with tunable optical and electrochemical properties in the solid state.

3.
J Am Chem Soc ; 142(40): 16990-16998, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32921053

RESUMO

Molecular ferroelectrics are becoming an important area of research due to their ability to form a variety of structures exhibiting the desired properties. However, the precise control over the assembly of molecular building blocks for the design and synthesis of photoresponsive molecular ferroelectrics remains a considerable challenge. Here, we report a new hybrid high-temperature ferroelectric, (Me2NH2)[NaFe(CN)5(NO)], by judiciously assembling inorganic photochromic nitroprusside anion, as the framework building block, and polar organic cation Me2NH2+, as the dipole-moment carrier, into the crystal lattice. Ferroelectricity arises through the synergetic ordering of Me2NH2+ below 408 K. Piezoresponse force microscopy witnessed the presence of 180° ferroelectric domains and evidenced polarization switching by repeatedly applying an external electric field. Irradiation of the N-bound nitrosyl ligand (ground state) leads to two different conformations: isonitrosyl O-bound (metastable state I) and side-on nitrosyl conformation (metastable state II). Such photoisomerization realized in solid-state molecular ferroelectrics allows for the photoswitching between the ferroelectric ground state and the metastable state. These results pave the way for new design approaches toward developing next-generation photostimulated ferroelectric materials at the molecular level.

4.
J Org Chem ; 83(9): 5282-5287, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29644855

RESUMO

The synthesis of two triads with two porphyrinyl units linked by oligopyridine derivatives and a new ß-functionalized porphyrin-dihydroazepine is described. One of the porphyrin-oligopyridine triads has a quinquepyridine unit connecting the porphyrins ß-pyrrolic positions, while the other one has an asymmetric quaterpyridine with one of the pyridines fused to the porphyrin. All compounds have fluorescence emission quantum yields in the range of meso-tetraphenylporphyrin (16-22%).

5.
Phys Chem Chem Phys ; 19(16): 10255-10263, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28265616

RESUMO

Quindoline (QUIND, indolo[3,2-b]quinoline) and cryptolepine (CRYPT, 5-methyl-10H-indolo[3,2-b]quinoline) together with their corresponding derivatives have been studied for decades due to their important biological activity against diseases like malaria. The biological activity of drugs is routinely investigated using fluorescence based methods. However, recent reports show that the photophysics of CRYPT and its analogues is not yet understood. Herein, the photophysics of CRYPT and QUIND is studied in aqueous solutions at different pH values and in both protic and aprotic solvents of different polarities. CRYPT and QUIND are shown to exist in different prototropic forms depending on pH and solvent polarity. CRYPT is found to be more sensitive to the solvent nature. Both compounds are shown to have two-photon stimulated emission. Their two-photon absorption (TPA) cross-sections were measured in the 710-960 nm range. The TPA cross-section is relatively low but allows for the observation of both compounds in HEK 293 T cells, where CRYPT is found mostly in the nucleus and QUIND accumulates in the cytoplasm.

6.
J Phys Chem A ; 119(11): 2351-62, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25135761

RESUMO

Charged molecules based on the quinolizinum cation have potential applications as labels in fluorescence imaging in biological media under nonlinear excitation. A systematic study of the linear and nonlinear photophysics of derivatives of the quinolizinum cation substituted by either dimethylaniline or methoxyphenyl electron donors is performed. The effects of donor strength, conjugation length, and symmetry in the two-photon emission efficiency are analyzed in detail. The best performing nonlinear fluorophore, with two-photon absorption cross sections of 1140 GM and an emission quantum yield of 0.22, is characterized by a symmetric D-π-A(+)-π-D architecture based on the methoxyphenyl substituent. Application of this molecule as a fluorescent marker in optical microscopy of living cells revealed that, under favorable conditions, the fluorophore can be localized in the cytoplasmatic compartment of the cell, staining vesicular shape organelles. At higher dye concentrations and longer staining times, the fluorophore can also penetrate into the nucleus. The nonlinearly excited fluorescence lifetime imaging shows that the fluorophore lifetime is sensitive to its location in the different cell compartments. Using fluorescence lifetime microscopy, a multicolor map of the cell is drafted with a single dye.


Assuntos
Corantes Fluorescentes/química , Quinolizinas/química , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Teoria Quântica , Quinolizinas/síntese química
7.
Langmuir ; 30(41): 12345-53, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25247636

RESUMO

Poly(butyl methacrylate) nanoparticles encapsulating a silica precursor, tetraethoxysilane (TEOS), were synthesized by a two-step emulsion polymerization process. We show that TEOS remains mostly unreacted inside the nanoparticles in water but acts both as a plasticizer and cross-linker in films cast from the dispersions. The diffusion-enhancing plasticizing effect is dominant at annealing temperatures closer to the glass-transition temperature of the polymer, and sol-gel cross-linking reactions predominate at higher temperatures. By choosing an appropriate annealing temperature, we were able to balance polymer interdiffusion and silica cross-linking to obtain films with good mechanical properties and excellent chemical resistance. The hybrid cross-linked films produced from these novel "smart" nanoparticles can be used in water-borne environmentally friendly coatings for high-performance applications.

8.
Org Biomol Chem ; 12(20): 3181-90, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24723199

RESUMO

Folic acid targeting by functionalization of the terminal γ-carboxylic acid is one of the most important strategies to selectively deliver chemotherapeutics and dyes to cancer cells which overexpress folate receptors. However, conjugation of folic acid is limited by its unique solubility and by selectivity issues imposing the need for expensive preparative reverse-phase chromatographic purification to isolate γ-folate conjugates. Herein is provided a novel synthetic tool for the synthesis of new folic acid conjugates with excellent γ-purity based on strain-promoted alkyne-azide cycloadditions with a γ-folate-cyclooctyne conjugate 3. To demonstrate the potential of this methodology several new folate conjugates were synthesized with high γ-purity and without using any type of chromatographic purification by reacting conjugate 3 with several fluorescent probes, polymers and siliceous materials bearing azide. In addition, the cycloaddition reaction between conjugate 3 and an azido-derived fluorescent dye was successfully performed in cellular media leading to an increase of fluorescence in the cells which overexpress folate receptors (NCI-H460).


Assuntos
Química Click/métodos , Ácido Fólico/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Etanolamina/química , Células HEK293 , Humanos , Microscopia Confocal , Espectrometria de Fluorescência
9.
Polymers (Basel) ; 15(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38006116

RESUMO

Gold nanoclusters (AuNCs) with fluorescence in the Near Infrared (NIR) by both one- and two-photon electronic excitation were incorporated in mesoporous silica nanoparticles (MSNs) using a novel one-pot synthesis procedure where the condensation polymerization of alkoxysilane monomers in the presence of the AuNCs and a surfactant produced hybrid MSNs of 49 nm diameter. This method was further developed to prepare 30 nm diameter nanocomposite particles with simultaneous NIR fluorescence and superparamagnetic properties, with a core composed of superparamagnetic manganese (II) ferrite nanoparticles (MnFe2O4) coated with a thin silica layer, and a shell of mesoporous silica decorated with AuNCs. The nanocomposite particles feature NIR-photoluminescence with 0.6% quantum yield and large Stokes shift (290 nm), and superparamagnetic response at 300 K, with a saturation magnetization of 13.4 emu g-1. The conjugation of NIR photoluminescence and superparamagnetic properties in the biocompatible nanocomposite has high potential for application in multimodal bioimaging.

10.
J Mater Chem B ; 11(3): 675-686, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36562480

RESUMO

Safety assessment of carbon nanomaterials is of paramount importance since they are on the frontline for applications in sensing, bioimaging and drug delivery. The biocompatibility and safety of functionalized nanodiamonds (NDs) are here addressed through the study of the pro-inflammatory response of RAW-264.7 macrophages exposed to new nanodiamonds@corrole hybrids. The corrole unit selected is as a prototype for a hydrophobic organic molecule that can function as a NIR fluorophore reporter, an optical sensor, a photodynamic therapy agent or a photocatalyst. The new functional nanohybrids containing detonated nanodiamonds (NDs) were obtained through esterification using carboxylated NDs and glycol corroles. The success of the covalent functionalization via carbodiimide activation was confirmed through X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. The UV-vis absorption and emission spectra of the hybrids are additive with respect to the corrole features. The cellular uptake, localization, cell viability and effects on immune cell activation of the new hybrids and of the precursors were carefully investigated using RAW-264.7 macrophages. Overall results showed that the ND@corrole hybrids had no pro-inflammatory effects on the RAW-264.7 macrophage cell line, making them an ideal candidate for a wide range of biomedical applications.


Assuntos
Nanodiamantes , Porfirinas , Nanodiamantes/química , Sistemas de Liberação de Medicamentos , Porfirinas/farmacologia , Macrófagos
11.
Adv Colloid Interface Sci ; 304: 102667, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462268

RESUMO

The development of functional materials with uniquely advanced properties lies at the core of nanoscience and nanotechnology. From the myriad possible combinations of organic and/or inorganic blocks, hybrids combining metal nanoclusters and carbon nanomaterials have emerged as highly attractive colloidal materials for imaging, sensing (optical and electrochemical) and catalysis, among other applications. While the metal nanoclusters provide extraordinary luminescent and electronic properties, the carbon nanomaterials (of zero, one or two dimensions) convey versatility, as well as unique interfacial, electronic, thermal, optical, and mechanical properties, which altogether can be put to use for the desired application. Herein, we present an overview of the field, for experts and non-experts, encompassing the basic properties of the building blocks, a systematic view of the chemical preparation routes and physicochemical properties of the hybrids, and a critical analysis of their ongoing and emerging applications. Challenges and opportunities, including directions towards green chemistry approaches, are also discussed.


Assuntos
Carbono , Nanoestruturas , Carbono/química , Catálise , Metais/química , Nanoestruturas/química , Nanotecnologia
12.
Phys Chem Chem Phys ; 13(19): 8838-46, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21455507

RESUMO

A series of new hyperbranched polymers containing a 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine core unit and polyfluorene chain arms have been synthesized via Suzuki coupling, and characterized by NMR, IR and GPC. All the polymers exhibit good thermal stability with a high decomposition temperature. By changing the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine/fluorene ratio the UV-vis absorption and emission spectra can be partially tuned. It has been found that the polymers containing a low ratio of 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine units (P1-P3) have an absorption maximum around 385 nm, localized in the polyfluorene chain, and a shoulder around 425 nm ascribable to a charge transfer state involving the fluorene and the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine core. Increasing the molar ratio of the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine unit enhances the charge transfer band which becomes dominant for P4. The LUMO level of these polymers is relatively low due to the electron affinity of the triazine group. The polymers show dual emission, with a structured band in the blue (410-440 nm), attributed to the polyfluorene, and a broad band in the red (470-500 nm) associated with the charge transfer state. All the polymers exhibit two-photon absorption activity in the range of 660 to 900 nm with the maximum two-photon absorption (TPA) cross-section red-shifted from the corresponding linear absorption. The values of the TPA cross-sections vary from 1000 to 5000 GM, following the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine/fluorene ratio.


Assuntos
Fluorenos/química , Fluorenos/síntese química , Polímeros/química , Polímeros/síntese química , Tiofenos/química , Triazinas/química , Estrutura Molecular , Processos Fotoquímicos
13.
J Nanosci Nanotechnol ; 11(4): 3151-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776682

RESUMO

The microphase-separation of Langmuir-Blodgett (LB) monolayers of a rhodamine B (RhB) end-labeled double hydrophilic block copolymer (DHBC), RhB-Poly(N,N-dimethylacrylamide)-b-poly(N,N-diethylacryl-amide) (RhB-PDMA(207)b-PDEA177) and the 1:1 segmental mixture of PDEA and RhB-PDMA homopolymers was followed by AFM. The DHBC LB films revealed a loose distribution of nano-aggregates with variable geometries below the lower critical solution temperature (LCST) of PDEA (32 degrees C) and low surface pressure (3 mN m(-1)). By increasing either the temperature above the LCST of PDEA or the surface pressure beyond the immersion regime of PDMA in the subphase (7 mN m(-1)) a dense nanopatterning was obtained. The absence of a corresponding regular nanopatterning in LB films of mixed homopolymers with the same composition highlights the role of the covalent bonding between PDEA and PDMA on the self-segregation of the two blocks at the air-water interface.


Assuntos
Membranas Artificiais , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ácidos Polimetacrílicos/química , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície , Temperatura
14.
Commun Chem ; 4(1): 142, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36697839

RESUMO

Mitochondria metabolism is an emergent target for the development of novel anticancer agents. It is amply recognized that strategies that allow for modulation of mitochondrial function in specific cell populations need to be developed for the therapeutic potential of mitochondria-targeting agents to become a reality in the clinic. In this work, we report dipolar and quadrupolar quinolizinium and benzimidazolium cations that show mitochondria targeting ability and localized light-induced mitochondria damage in live animal cells. Some of the dyes induce a very efficient disruption of mitochondrial potential and subsequent cell death under two-photon excitation in the Near-infrared (NIR) opening up possible applications of azonia/azolium aromatic heterocycles as precision photosensitizers. The dipolar compounds could be excited in the NIR due to a high two-photon brightness while exhibiting emission in the red part of the visible spectra (600-700 nm). Interaction with the mitochondria leads to an unexpected blue-shift of the emission of the far-red emitting compounds, which we assign to emission from the locally excited state. Interaction and possibly aggregation at the mitochondria prevents access to the intramolecular charge transfer state responsible for far-red emission.

15.
Chemphyschem ; 11(8): 1749-56, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20397240

RESUMO

We achieve very high hybridization efficiencies by using a new method to immobilize DNA strands on the surface of thermoresponsive polymer nanoparticles. Hybridization efficiencies of about 70 % are obtained between the DNA immobilized in the particles and a complementary strand in solution, even at very low ionic strengths (1 mM). The polymer nanoparticles have a glassy poly(methylmethacrylate) (PMMA) core and a thermoresponsive shell of poly(N-isopropylacrylamide) (PNIPAM) containing positive charges. After a DNA strand labeled with a fluorescence probe is loaded onto the particles at room temperature, the temperature is increased above the volume phase transition temperature of the PNIPAM shell, TVPT approximately 28 degrees C. The collapse of the particle shell immobilizes the DNA while maintaining its availability for hybridization with a complementary strand. Förster resonance energy transfer (FRET) is used to detect the hybridization with a complementary DNA strand labeled with a FRET acceptor probe.


Assuntos
Resinas Acrílicas/química , DNA/química , Nanopartículas/química , Polimetil Metacrilato/química , Adsorção , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Hibridização de Ácido Nucleico , Concentração Osmolar
16.
Langmuir ; 26(22): 17165-77, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20964300

RESUMO

Phase separation and interactions in mixed monolayers of dipalmitoylphosphatidylglycerol (DPPG) with the rhodamine B end-labeled double-hydrophilic block copolymer (DHBC), poly(N,N-dimethylacrylamide)-block-poly(N,N-diethylacrylamide) (RhB-PDMA(207)-b-PDEA(177)), was studied at the air-water interface. Surface pressure versus area isotherms indicate that both components behave almost independently. Brewster angle microscopy (BAM) images show a random distribution of liquid condensed (LC) domains of DPPG in an apparent homogeneous matrix of DHBC, excluding the macroscopic phase separation. The laser scanning confocal fluorescence microscopy (LSCFM) of the rhodamine dye at the end of the PDMA chain showed how the DHBC is distributed in Langmuir-Blodgett (LB) mixed monolayers. The high spatial resolution of atomic force microscopy (AFM) combined with the LCSFM images indicates that DHBC incorporates in the expanded phase of DPPG to form mixed domains, being excluded from the condensed regions. Upon compression, nanosized LC domains of DPPG nucleate inside the mixed domains corralled in the nanopatterning of pure DHBC. The negatively charged polar group of DPPG inhibits rhodamine aggregation, while the long polymer chains promote the formation of corralled nanodomains of DPPG in two dimensions.


Assuntos
Acrilamidas/química , Ar , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica/métodos , Microscopia Confocal/métodos , Fosfatidilgliceróis/química , Água/química , Rodaminas/química , Temperatura
17.
Langmuir ; 26(3): 1807-15, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19928784

RESUMO

The thermoresponsive behavior of the rhodamine B end-labeled double hydrophilic block copolymer (DHBC) poly(N,N-dimethylacrylamide)-b-poly(N,N-diethylacrylamide) (RhB-PDMA(207)-b-PDEA(177)) and the 1:1 segmental mixture of PDEA and rhodamine B end-labeled PDMA homopolymers was studied over the range of 10-40 degrees C at the air-water interface. The increase in collapse surface pressure (second plateau regime) of the DHBC with temperature confirms the thermoresponsiveness of PDEA at the interface. The sum of the pi-A isotherms of the two single homopolymers weighted by composition closely follows the pi-A isotherm of the DHBC, suggesting that the behavior of each block of the DHBC is not influenced by the presence of the other block. Langmuir-Blodgett monolayers of DHBC deposited on glass substrates were analyzed by laser scanning confocal fluorescence microscopy (LSCFM), showing schizophrenic behavior: at low temperature, the RhB-PDMA block dominates the inside of bright (core) microdomains, switching to the outside (shell) at temperatures above the lower critical solution temperature (LCST) of PDEA. This core-shell inversion triggered by the temperature increase was not detected in the homopolymer mixture. The present results suggest that both the covalent bond between the two blocks of the DHBC and the tendency of rhodamine B to aggregate play a role in the formation of the bright cores at low temperature whereas PDEA thermoaggregation is responsible for the formation of the dark cores above the LCST of PDEA.


Assuntos
Acrilamidas/química , Ar , Temperatura , Água/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Pressão , Rodaminas/química , Propriedades de Superfície
18.
Chem Soc Rev ; 38(8): 2410-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19623358

RESUMO

Rhodamine dyes are widely used as fluorescent probes owing to their high absorption coefficient and broad fluorescence in the visible region of electromagnetic spectrum, high fluorescence quantum yield and photostability. A great interest in the development of new synthetic procedures for preparation of Rhodamine derivatives has arisen in recent years because for most applications the probe must be covalently linked to another (bio)molecule or surface. In this critical review the strategies for modification of Rhodamine dyes and a discussion on the variety of applications of these new derivatives as fluorescent probes are given (108 references).

19.
J Phys Chem B ; 112(12): 3581-5, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18311968

RESUMO

The fluorescence of the single tryptophan (Trp69) of cutinase from Fusarium solani pisi, free in aqueous solution and adsorbed onto the surface of poly(methyl methacrylate) (PMMA) latex particles, was studied at pHs of 4.5 and 8.0. The monodisperse PMMA particles (d=106.0+/-0.1 nm) were coated with a quite compact monolayer of cutinase at both pH values. The Trp decay curve of the folded free cutinase in solution can only be fitted with a sum of four exponentials with lifetimes of 0.05, 0.3-0.4, 2-3, and 6-7 ns, irrespective of pH. The 50 ps lifetime is attributed to the population of Trp residues hydrogen bonded with the Ala32 and strongly quenched by a close disulfide bridge, while the other lifetimes are due to the non-hydrogen-bonded Trp rotamers. The 50 ps Trp lifetime component disappears by temperature melting and upon protein adsorption, owing to the disruption of the Trp-Ala hydrogen bond and the release of the Trp residue from the vicinity of the disulfide bridge. This shows that cutinase adsorption occurs by the region of the protein where the Trp is located, which agrees with the retention of cutinase enzymatic activity by adsorption at basic pH.


Assuntos
Hidrolases de Éster Carboxílico/química , Nanopartículas/química , Polimetil Metacrilato/química , Triptofano/análise , Triptofano/química , Absorção , Dissulfetos/química , Fluorescência , Fusarium/enzimologia , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína
20.
J Phys Chem A ; 112(23): 5034-9, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18476678

RESUMO

The S1-S0 limiting anisotropy of a widely used fluorophore, rhodamine 101, is determined with unprecedented accuracy. From time-resolved and steady-state fluorescence measurements in several solvents, it is shown that the limiting anisotropy of rhodamine 101 is for all practical purposes equal to the theoretical one-photon fundamental anisotropy value of 2/5, both in rigid and in fluid media. This fact, along with the favorable chemical and photophysical properties of rhodamine 101, point to its use as a standard for fluorescence polarization measurements. It is also shown that if the excitation pulse can be considered a delta impulse with respect to the time scale of the anisotropy decay (but not necessarily to the time scale of the intensity decay), then no deconvolution procedure is needed for anisotropy decay analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA