Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Pathog ; 19(8): e1011575, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603560

RESUMO

Mycobacterium abscessus causes severe disease in patients with cystic fibrosis. Little is known in M. abscessus about the roles of small regulatory RNAs (sRNA) in gene regulation. We show that the sRNA B11 controls gene expression and virulence-associated phenotypes in this pathogen. B11 deletion from the smooth strain ATCC_19977 produced a rough strain, increased pro-inflammatory signaling and virulence in multiple infection models, and increased resistance to antibiotics. Examination of clinical isolate cohorts identified isolates with B11 mutations or reduced expression. We used RNAseq and proteomics to investigate the effects of B11 on gene expression and test the impact of mutations found in clinical isolates. Over 200 genes were differentially expressed in the deletion mutant. Strains with the clinical B11 mutations showed expression trends similar to the deletion mutant, suggesting partial loss of function. Among genes upregulated in the B11 mutant, there was a strong enrichment for genes with B11-complementary sequences in their predicted ribosome binding sites (RBS), consistent with B11 functioning as a negative regulator that represses translation via base-pairing to RBSs. Comparing the proteomes similarly revealed that upregulated proteins were strongly enriched for B11-complementary sequences. Intriguingly, genes upregulated in the absence of B11 included components of the ESX-4 secretion system, critical for M. abscessus virulence. Many of these genes had B11-complementary sequences at their RBSs, which we show is sufficient to mediate repression by B11 through direct binding. Altogether, our data show that B11 acts as a direct negative regulator and mediates (likely indirect) positive regulation with pleiotropic effects on gene expression and clinically important phenotypes in M. abscessus. The presence of hypomorphic B11 mutations in clinical strains is consistent with the idea that lower B11 activity may be advantageous for M. abscessus in some clinical contexts. This is the first report on an sRNA role in M. abscessus.


Assuntos
Mycobacterium abscessus , Pequeno RNA não Traduzido , Mycobacterium abscessus/genética , Virulência/genética , Antibacterianos , Pequeno RNA não Traduzido/genética
2.
J Biol Chem ; 299(11): 105312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37802316

RESUMO

The mechanisms and regulation of RNA degradation in mycobacteria have been subject to increased interest following the identification of interplay between RNA metabolism and drug resistance. Mycobacteria encode multiple ribonucleases predicted to participate in mRNA degradation and/or processing of stable RNAs. RNase E is hypothesized to play a major role in mRNA degradation because of its essentiality in mycobacteria and its role in mRNA degradation in gram-negative bacteria. Here, we defined the impact of RNase E on mRNA degradation rates transcriptome-wide in the nonpathogenic model Mycolicibacterium smegmatis. RNase E played a rate-limiting role in degradation of the transcripts encoded by at least 89% of protein-coding genes, with leadered transcripts often being more affected by RNase E repression than leaderless transcripts. There was an apparent global slowing of transcription in response to knockdown of RNase E, suggesting that M. smegmatis regulates transcription in responses to changes in mRNA degradation. This compensation was incomplete, as the abundance of most transcripts increased upon RNase E knockdown. We assessed the sequence preferences for cleavage by RNase E transcriptome-wide in M. smegmatis and Mycobacterium tuberculosis and found a consistent bias for cleavage in C-rich regions. Purified RNase E had a clear preference for cleavage immediately upstream of cytidines, distinct from the sequence preferences of RNase E in gram-negative bacteria. We furthermore report a high-resolution map of mRNA cleavage sites in M. tuberculosis, which occur primarily within the RNase E-preferred sequence context, confirming that RNase E has a broad impact on the M. tuberculosis transcriptome.


Assuntos
Mycobacterium smegmatis , RNA Mensageiro , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Mensageiro/metabolismo , RNA Bacteriano/metabolismo
3.
Antimicrob Agents Chemother ; 68(10): e0064524, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194262

RESUMO

In view of the urgent need for new antibiotics to treat human infections caused by multidrug-resistant pathogens, drug repurposing is gaining strength due to the relatively low research costs and shorter clinical trials. Such is the case of artemisinin, an antimalarial drug that has recently been shown to display activity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To gain insight into how Mtb is affected by artemisinin, we used RNAseq to assess the impact of artemisinin on gene expression profiles, revealing the induction of several efflux pumps and the KstR2 regulon. To anticipate the artemisinin resistance-conferring mutations that could arise in clinical Mtb strains, we performed an in vitro evolution experiment in the presence of lethal concentrations of artemisinin. We obtained artemisinin-resistant isolates displaying different growth kinetics and drug phenotypes, suggesting that resistance evolved through different pathways. Whole-genome sequencing of nine isolates revealed alterations in the glpK and glpQ1 genes, both involved in glycerol metabolism, in seven and one strains, respectively. We then constructed a glpK mutant and found that loss of glpK increases artemisinin resistance only when glycerol is present as a major carbon source. Our results suggest that mutations in glycerol catabolism genes could be selected during the evolution of resistance to artemisinin when glycerol is available as a carbon source. These results add to recent findings of mutations and phase variants that reduce drug efficacy in carbon-source-dependent ways.


Assuntos
Antituberculosos , Artemisininas , Glicerol , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Artemisininas/farmacologia , Antituberculosos/farmacologia , Glicerol/metabolismo , Carbono/metabolismo , Mutação , Farmacorresistência Bacteriana/genética , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequenciamento Completo do Genoma
4.
PLoS Pathog ; 18(7): e1010705, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35830479

RESUMO

Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.


Assuntos
Mycobacterium tuberculosis , Ribonucleases , Tolerância a Medicamentos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
5.
J Proteome Res ; 22(6): 1682-1694, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37017314

RESUMO

To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.


Assuntos
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteômica , Proteoma/genética , Proteoma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Simbiose/genética
6.
Environ Microbiol ; 24(3): 1247-1262, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34725905

RESUMO

Antimicrobial resistance represents a major global health concern and environmental bacteria are considered a source of resistance genes. Carbapenems are often used as the last antibiotic option to treat multidrug-resistant bacteria. Metallo-ß-lactamases (MBLs) are able to render resistance to almost all ß-lactam antibiotics, including carbapenems. Unfortunately, there are no inhibitors against MBLs for clinical use. Subclass B2 MBLs are the only enzymes working as strict carbapenemases, under-represented, encoded in chromosome genes and only functional as mono-zinc enzymes. Despite current efforts in MBLs inhibitor development, B2 carbapenemase activity is especially difficult to suppress, even in vitro. In this study we characterized BioF, a novel subclass B2 MBL identified in a new environmental Pseudomonas sp. strain isolated from an on-farm biopurification system (BPS). Although blaBioF is most likely a chromosomal gene, it is found in a genomic island and may represent a step previous to the horizontal transmission of B2 genes. The new B2 MBL is active as a mono-zinc enzyme and is a potent carbapenemase with incipient activity against some cephalosporins. BioF activity is not affected by excess zinc and is only inhibited at high metal chelator concentrations. The discovery and characterization of B2 MBL BioF as a potent carbapenemase in a BPS bacterial isolate emphasizes the importance of exploring antibiotic resistances existing in the environmental microbiota under the influence of human activities before they could emerge clinically.


Assuntos
Pseudomonas , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos , Fazendas , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas/genética , beta-Lactamases/genética
7.
Food Technol Biotechnol ; 59(4): 519-529, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35136375

RESUMO

RESEARCH BACKGROUND: In recent decades, laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) have attracted the attention of researchers due to their wide range of biotechnological and industrial applications. Laccases can oxidize a variety of organic and inorganic compounds, making them suitable as biocatalysts in biotechnological processes. Even though the most traditionally used laccases in the industry are of fungal origin, bacterial laccases have shown an enormous potential given their ability to act on several substrates and in multiple conditions. The present study aims to characterize a plasmid-encoded laccase-like multicopper oxidase (LMCO) from Ochrobactrum sp. BF15, a bacterial strain previously isolated from polluted soil. EXPERIMENTAL APPROACH: We used in silico profile hidden Markov models to identify novel laccase-like genes in Ochrobactrum sp. BF15. For laccase characterization, we performed heterologous expression in Escherichia coli, purification and activity measurement on typical laccase substrates. RESULTS AND CONCLUSIONS: Profile hidden Markov models allowed us to identify a novel LMCO, named Lac80. In silico analysis of Lac80 revealed the presence of three conserved copper oxidase domains characteristic of three-domain laccases. We successfully expressed Lac80 heterologously in E. coli, allowing us to purify the protein for further activity evaluation. Of thirteen typical laccase substrates tested, Lac80 showed lower activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), pyrocatechol, pyrogallol and vanillic acid, and higher activity on 2,6-dimethoxyphenol. NOVELTY AND SCIENTIFIC CONTRIBUTION: Our results show Lac80 as a promising laccase for use in industrial applications. The present work shows the relevance of bacterial laccases and highlights the importance of environmental plasmids as valuable sources of new genes encoding enzymes with potential use in biotechnological processes.

8.
Plasmid ; 80: 16-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25957823

RESUMO

Biopurification systems (BPS) are complex soil-related and artificially-generated environments usually designed for the removal of toxic compounds from contaminated wastewaters. The present study has been conducted to isolate and characterize a collection of cultivable plasmid-carrying bacterial isolates recovered from a BPS established for the decontamination of wastewater generated in a farmyard. Out of 1400 isolates, a collection of 75 plasmid-containing bacteria was obtained, of which 35 representative isolates comprising in total at least 50 plasmids were chosen for further characterization. Bacterial hosts were taxonomically assigned by 16S ribosomal RNA gene sequencing and phenotypically characterized according to their ability to grow in presence of different antibiotics and heavy metals. The study demonstrated that a high proportion of the isolates was tolerant to antibiotics and/or heavy metals, highlighting the on-farm BPS enrichment in such genetic traits. Several plasmids conferring such resistances in the bacterial collection were detected to be either mobilizable or selftransmissible. Occurrence of broad host range plasmids of the incompatibility groups IncP, IncQ, IncN and IncW was examined with positive results only for the first group. Presence of the IS1071 insertion sequence, frequently associated with xenobiotics degradation genes, was detected in DNA obtained from 24 of these isolates, strongly suggesting the presence of yet-hidden catabolic activities in the collection of isolates. The results showed a remarkable diversity in the plasmid mobilome of cultivable bacteria in the BPS with the presence of abundant resistance markers of different types, thus providing a suitable environment to investigate the genetic structure of the mobile genetic pool in a model on-farm biofilter for wastewater decontamination in intensive agricultural production.


Assuntos
Gammaproteobacteria/isolamento & purificação , Plasmídeos/genética , Agricultura , Biodegradação Ambiental , DNA Bacteriano/genética , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/genética , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Tipagem Molecular , Resíduos de Praguicidas/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
9.
Plasmid ; 67(3): 199-210, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233546

RESUMO

Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.


Assuntos
DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Bactérias Gram-Negativas/genética , Sinorhizobium meliloti/genética , Sinorhizobium/genética , Microbiologia do Solo , Sequência de Bases , Conjugação Genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Bactérias Gram-Negativas/classificação , Medicago/microbiologia , Dados de Sequência Molecular , Fixação de Nitrogênio , Filogenia , Raízes de Plantas/microbiologia , Plasmídeos , Sinorhizobium/classificação , Sinorhizobium meliloti/classificação , Simbiose/genética , Simpatria
10.
Braz J Microbiol ; 53(3): 1633-1643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704174

RESUMO

The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn2+. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.


Assuntos
Rhizobium , Simbiose , Ácidos/farmacologia , Medicago sativa/metabolismo , Fixação de Nitrogênio/genética , Rhizobium/genética , Simbiose/genética
11.
BMC Res Notes ; 13(1): 462, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993774

RESUMO

OBJECTIVE: Restriction-Modification (R-M) systems are ubiquitous in bacteria and were considered for years as rudimentary immune systems that protect bacterial cells from foreign DNA. Currently, these R-M systems are recognized as important players in global gene expression and other cellular processes such us virulence and evolution of genomes. Here, we report the role of the unique DNA methyltransferase in Mycobacterium smegmatis, which shows a moderate degree of sequence similarity to MamA, a previously characterized methyltransferase that affects gene expression in Mycobacterium tuberculosis and is important for survival under hypoxic conditions. RESULTS: We found that depletion of mamA levels impairs growth and produces elongated cell bodies. Microscopy revealed irregular septation and unevenly distributed DNA, with large areas devoid of DNA and small DNA-free cells. Deletion of MSMEG_3214, a predicted endonuclease-encoding gene co-transcribed with mamA, restored the WT growth phenotype in a mamA-depleted background. Our results suggest that the mamA-depletion phenotype can be explained by DNA cleavage by the apparent cognate restriction endonuclease MSMEG_3214. In addition, in silico analysis predicts that both MamA methyltransferase and MSMEG_3214 endonuclease recognize the same palindromic DNA sequence. We propose that MamA and MSMEG_3214 constitute a previously undescribed R-M system in M. smegmatis.


Assuntos
Proteínas de Bactérias , Enzimas de Restrição do DNA , Mycobacterium smegmatis , Proteínas de Bactérias/genética , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis , Virulência
12.
J Ethnopharmacol ; 262: 113191, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32730878

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Emergence of drug-resistant and multidrug-resistant Mycobacterium tuberculosis (Mtb) strains is a major barrier to tuberculosis (TB) eradication, as it leads to longer treatment regimens and in many cases treatment failure. Thus, there is an urgent need to explore new TB drugs and combinations, in order to shorten TB treatment and improve outcomes. Here, we evaluated the potential of two Asian and African traditional medicinal plants, Artemisia annua, a natural source of artemisinin (AN), and Artemisia afra, as sources of novel antitubercular agents. AIM OF THE STUDY: Our goal was to measure the activity of A. annua and A. afra extracts against Mtb as potential natural and inexpensive therapies for TB treatment, or as sources of compounds that could be further developed into effective treatments. MATERIALS AND METHODS: The minimum inhibitory concentrations (MICs) of A. annua and A. afra dichloromethane extracts were determined, and concentrations above the MICs were used to evaluate their ability to kill Mtb and Mycobacterium abscessus in vitro. RESULTS: Previous studies showed that A. annua and A. afra inhibit Mtb growth. Here, we show for the first time that Artemisia extracts have a strong bactericidal activity against Mtb. The killing effect of A. annua was much stronger than equivalent concentrations of pure AN, suggesting that A. annua extracts kill Mtb through a combination of AN and additional compounds. A. afra, which produces very little AN, displayed bactericidal activity against Mtb that was substantial but weaker than that of A. annua. In addition, we measured the activity of Artemisia extracts against Mycobacterium abscessus. Interestingly, we observed that while A. annua is not bactericidal, it inhibits growth of M. abscessus, highlighting the potential of this plant in combinatory therapies to treat M. abscessus infections. CONCLUSION: Our results indicate that Artemisia extracts have an enormous potential for treatment of TB and M. abscessus infections, and that these plants contain bactericidal compounds in addition to AN. Combination of extracts with existing antibiotics may not only improve treatment outcomes but also reduce the emergence of resistance to other drugs.


Assuntos
Antituberculosos/farmacologia , Artemisia , Mycobacterium tuberculosis/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antituberculosos/isolamento & purificação , Artemisia annua , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/fisiologia , Extratos Vegetais/isolamento & purificação
13.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300936

RESUMO

Rapid dissemination and emergence of novel antibiotic resistance genes among bacteria are rising problems worldwide. Since their discovery in clinical isolates in the late 1980s, class 1 integrons have been found in a wide range of bacterial genera and have been extensively studied as contributors to dissemination of antibiotic resistance. The present study aimed to investigate the presence and structure of class 1 integrons in plasmid-carrying bacterial isolates obtained from a biopurification system used for decontamination of pesticide-contaminated water as well as their possible role as reservoir of antimicrobial resistance gene cassettes. A total of 35 representative isolates were screened for the presence of class 1 integron integrase encoded by intI1. PCR and DNA sequencing revealed the presence of six class 1 integrons with four variable regions: 5΄CS-aadA1b-3΄CS, 5΄CS-aadA2-3΄CS, 5΄CS-aadA11cΔ-3΄CS and 5΄CS-dfrB3-aadA1di-catB2-aadA6k-3΄CS, the last two being unseen arrays of antimicrobial resistance gene cassettes associated with novel environmental alleles of intI1. These four class 1 integrons were identified as being present in four different genera, including Ochrobactrum, and Variovorax, where class 1 integrons have not been previously reported. The results provide evidence of the biopurification systems as a tank of class 1 integron carrying strains and novel environmental class 1 integron integrases associated with antimicrobial resistance gene cassette arrays.


Assuntos
Bactérias/genética , Integrons , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fazendas , Integrases/genética , Integrases/metabolismo , Gado , Esterco/microbiologia , Plasmídeos/genética
14.
Syst Appl Microbiol ; 40(5): 297-307, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28648724

RESUMO

Desmodium spp. are leguminous plants belonging to the tribe Desmodieae of the subfamily Papilionoideae. They are widely distributed in temperated and subtropical regions and are used as forage plants, for biological control, and in traditional folk medicine. The genus includes pioneer species that resist the xerothermic environment and grow in arid, barren sites. Desmodium species that form nitrogen-fixing symbiosis with rhizobia play an important role in sustainable agriculture. In Argentina, 23 native species of this genus have been found, including Desmodium incanum. In this study, a total of 64 D. incanum-nodulating rhizobia were obtained from root nodules of four Argentinean plant populations. Rhizobia showed different abiotic-stress tolerances and a remarkable genetic diversity using PCR fingerprinting, with more than 30 different amplification profiles. None of the isolates were found at more than one site, thus indicating a high level of rhizobial diversity associated with D. incanum in Argentinean soils. In selected isolates, 16S rDNA sequencing and whole-cell extract MALDI TOF analysis revealed the presence of isolates related to Bradyrhizobium elkanii, Bradyrhizobium japonicum, Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense, Bradyrhizobium denitrificans and Rhizobium tropici species. In addition, the nodC gene studied in the selected isolates showed different allelic variants. Isolates were phenotypically characterized by assaying their growth under different abiotic stresses. Some of the local isolates were remarkably tolerant to high temperatures, extreme pH and salinity, which are all stressors commonly found in Argentinean soils. One of the isolates showed high tolerance to temperature and extreme pH, and produced higher aerial plant dry weights compared to other inoculated treatments. These results indicated that local isolates could be efficiently used for D. incanum inoculation.


Assuntos
Fabaceae/microbiologia , Rhizobium , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Argentina , Proteínas de Bactérias/genética , DNA Bacteriano/genética , N-Acetilglucosaminiltransferases/genética , Fixação de Nitrogênio/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
PLoS One ; 9(2): e89922, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587126

RESUMO

IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are "hot spots" of plasmids potentially carrying catabolic genes.


Assuntos
DNA Bacteriano/genética , Poluentes Ambientais/química , Variação Genética , Plasmídeos/genética , Animais , Sequência de Bases , Southern Blotting , Primers do DNA/genética , Europa (Continente) , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Poríferos/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
J Microbiol Methods ; 93(1): 9-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384825

RESUMO

The preparation of plasmid-borne RIVET libraries can be troublesome when high genomic coverages are needed. We present here the construction and functional validation of a new set of miniTn5 promoter traps to generate tnpR-based RIVET libraries. The ability to generate tnpR transcriptional fusions by transposition will significantly facilitate the setup of RIVET studies in those bacteria where Tn5 transposition is operative.


Assuntos
Genética Microbiana/métodos , Bactérias Gram-Negativas/genética , Biologia Molecular/métodos , Regiões Promotoras Genéticas , Elementos de DNA Transponíveis , Fusão Gênica , Biblioteca Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA