Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Res ; 277: 127503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748260

RESUMO

Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.


Assuntos
Lisossomos , Fagocitose , Lisossomos/microbiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Endocitose , Evasão da Resposta Imune
2.
Front Cell Infect Microbiol ; 10: 571040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489930

RESUMO

Campylobacter jejuni (CJ) is the most prevalent zoonotic pathogen of chicken meat and related products, which may lead to gastroenteritis and autoimmune diseases in humans. Although controlling this bacterium is important, CJ strains resistance against traditional antibiotic therapy has been increased. Vegetable oils and fats are natural biomaterials explored since the Ancient times, due to their therapeutic properties. Nanotechnology has promoted the miniaturization of materials, improving bioavailability and efficacy, while reducing the toxicity of loaded active molecules. In this work, a screening of 28 vegetable oils was firstly performed, in order to select anti-CJ candidates by the disc diffusion test. Thus, the selected liquid lipids were used as active molecules in nanostructured lipid carriers (NLC) formulations. The three resultant systems were characterized in terms of particle size (~200 nm), polydispersity index (~0.15), and zeta potential (~-35mV), and its physicochemical stability was confirmed for a year, at 25°C. The structural properties of NLC were assessed by infrared (FTIR-ATR) and differential scanning calorimetry (DSC) analyses. The spherical nanoparticle morphology and narrow size distribution was observed by transmission electron microscopy (TEM) and field emission scanning electron (FE-SEM) analyses, respectively. Then, the in vitro antimicrobial activity test determined the minimum inhibitory concentration (MIC) of each formulation against CJ strains, in both free (1-3 mg/ml-1) and sessile (0.78 mg/ml-1) forms. Finally, the in vitro biocompatibility of NLC was demonstrated through cell viability using VERO cell line, in which F6 was found twice less cytotoxic than pure olibanum oil. Considering the abovementioned achieved, F6 formulation is able to be evaluated in the in vivo anti-CJ efficacy assays.


Assuntos
Campylobacter jejuni , Nanopartículas , Portadores de Fármacos , Humanos , Lipídeos , Tamanho da Partícula
3.
Front Cell Dev Biol ; 8: 569729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195200

RESUMO

Trypanosoma cruzi P21 is a protein secreted by the parasite that plays biological roles directly involved in the progression of Chagas disease. The recombinant protein (rP21) demonstrates biological properties, such as binding to CXCR4 receptors in macrophages, chemotactic activity of immune cells, and inhibiting angiogenesis. This study aimed to verify the effects of rP21 interaction with CXCR4 from non-tumoral cells (MCF-10A) and triple-negative breast cancer cells (MDA-MB-231). Our data showed that the MDA-MB-231 cells expressed higher levels of CXCR4 than did the non-tumor cell lines. Besides, cytotoxicity assays using different concentrations of rP21 showed that the recombinant protein was non-toxic and was able to bind to the cell membranes of both cell lineages. In addition, rP21 reduced the migration and invasion of MDA-MB-231 cells by the downregulation of MMP-9 gene expression. In addition, treatment with rP21 blocked the cell cycle, arresting it in the G1 phase, mainly in MDA-MB-231 cells. Finally, rP21 prevents the chemotaxis and proliferation induced by CXCL12. Our data showed that rP21 binds to the CXCR4 receptors in both cells, downregulates CXCR4 gene expression, and decreases the receptors in the cytoplasm of MDA-MB-231 cells, suggesting CXCR4 internalization. This internalization may explain the desensitization of the receptors in these cells. Thus, rP21 prevents migration, invasion, and progression in MDA-MB-231 cells.

4.
Front Immunol ; 11: 1010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655546

RESUMO

Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Malária/parasitologia , Mioblastos/parasitologia , Miocárdio/patologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/fisiologia , Doença Aguda , Animais , Linhagem Celular , Interações Hospedeiro-Parasita , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferon gama/metabolismo , Malária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Carga Parasitária , Proteínas de Protozoários/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-29164071

RESUMO

Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for ß-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.


Assuntos
Doença de Chagas/imunologia , Doença de Chagas/patologia , Galectina 3/imunologia , Galectina 3/metabolismo , Imunidade Inata/imunologia , Trypanosoma cruzi/imunologia , Animais , Sobrevivência Celular , Doença de Chagas/parasitologia , Chlorocebus aethiops , Colágeno/análise , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose/imunologia , Fibrose/prevenção & controle , Galactosídeos , Galectina 3/genética , Coração , Interações Hospedeiro-Parasita , Macrófagos Peritoneais/parasitologia , Masculino , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia , Baço/imunologia , Trypanosoma cruzi/patogenicidade , Células Vero
6.
Sci Rep ; 5: 16877, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26574156

RESUMO

Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%-30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy.


Assuntos
Cardiomiopatias/etiologia , Doença de Chagas/patologia , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma cruzi/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Quimiotaxia/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Interleucina-4/metabolismo , Leucócitos/citologia , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Trypanosoma cruzi/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA