Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679443

RESUMO

The potato cyst nematode (PCN), Globodera pallida, has acquired significant importance throughout Europe due to its widespread prevalence and negative effects on potato production. Thus, rapid and reliable diagnosis of PCN is critical during surveillance programs and for the implementation of control measures. The development of innovative technologies to overcome the limitations of current methodologies in achieving early detection is needed. Lab-on-a-chip devices can swiftly and accurately detect the presence of certain nucleotide sequences with high sensitivity and convert the presence of biological components into an understandable electrical signal by combining biosensors with microfluidics-based biochemical analysis. In this study, a specific DNA-probe sequence and PCR primers were designed to be used in a magnetoresistive biosensing platform to amplify the internal transcribed spacer region of the ribosomal DNA of G. pallida. Magnetic nanoparticles were used as the labelling agents of asymmetric PCR product through biotin−streptavidin interaction. Upon target hybridization to sensor immobilized oligo probes, the fringe field created by the magnetic nanoparticles produces a variation in the sensor's electrical resistance. The detection signal corresponds to the concentration of target molecules present in the sample. The results demonstrate the suitability of the magnetic biosensor to detect PCR target product and the specificity of the probe, which consistently distinguishes G. pallida (DV/V > 1%) from other cyst nematodes (DV/V < 1%), even when DNA mixtures were tested at different concentrations. This shows the magnetic biosensor's potential as a bioanalytical device for field applications and border phytosanitary inspections.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , Quarentena , Tylenchoidea/genética , Reação em Cadeia da Polimerase/métodos , DNA
2.
Nanomedicine ; 30: 102287, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798732

RESUMO

The abundance of cellular fibronectin (c-Fn) for ischemic stroke patients and the narrow time-window (<4.5 h) for the decision to administer the thrombolytic treatment with recombinant tissue plasminogen activator (rtPA) are challenging for the development of a point-of-care (PoC) diagnostic platform. We report a case of stratification of ischemic stroke patients based on a magnetoresistive biosensor platform that quantifies the c-Fn levels in a small volume of serum, within the clinically relevant time-window. Our PoC platform uses different ratios of biofunctionalized magnetic nanoparticles (MNPs) as immunoassay labels to adjust the sensitivity within the clinically relevant ranges for c-Fn (1-4 µg/mL). After optimizing the detection range, resolution, and sensitivity, our device was able to stratify ischemic stroke patients who developed hemorrhagic transformation, the main side-effect of rtPA, from those (both non-treated and treated with rtPA) who did not.


Assuntos
Isquemia Encefálica/sangue , Fibronectinas/sangue , Sistemas Automatizados de Assistência Junto ao Leito , Acidente Vascular Cerebral/sangue , Idoso , Estudos de Coortes , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade
3.
Sensors (Basel) ; 20(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545686

RESUMO

The accurate diagnosis of bacterial infections is of critical importance for effective treatment decisions. Due to the multietiologic nature of most infectious diseases, multiplex assays are essential for diagnostics. However, multiplexability in nucleic acid amplification-based methods commonly resorts to multiple primers and/or multiple reaction chambers, which increases analysis cost and complexity. Herein, a polymerase chain reaction (PCR) offer method based on a universal pair of primers and an array of specific oligonucleotide probes was developed through the analysis of the bacterial 16S ribosomal RNA gene. The detection system consisted of DNA hybridization over an array of magnetoresistive sensors in a microfabricated biochip coupled to an electronic reader. Immobilized probes interrogated single-stranded biotinylated amplicons and were obtained using asymmetric PCR. Moreover, they were magnetically labelled with streptavidin-coated superparamagnetic nanoparticles. The benchmarking of the system was demonstrated to detect five major bovine mastitis-causing pathogens: Escherichia coli, Klebsiella sp., Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae. All selected probes proved to specifically detect their respective amplicon without significant cross reactivity. A calibration curve was performed for S. agalactiae, which demonstrates demonstrating a limit of detection below 30 fg/µL. Thus, a sensitive and specific multiplex detection assay was established, demonstrating its potential as a bioanalytical device for point-of-care applications.


Assuntos
Bactérias/isolamento & purificação , Mastite Bovina/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Bactérias/classificação , Bovinos , DNA Bacteriano/genética , Feminino , Mastite Bovina/microbiologia , Sondas de Oligonucleotídeos , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade
4.
Anal Bioanal Chem ; 411(9): 1839-1862, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30783712

RESUMO

The growing need for biological information at the single cell level has driven the development of improved cytometry technologies. Flow cytometry is a particularly powerful method that has evolved over the past few decades. Flow cytometers have become essential instruments in biomedical research and routine clinical tests for disease diagnosis, prognosis, and treatment monitoring. However, the increasing number of cellular parameters unveiled by genomic, proteomic, and metabolomic data platforms demands an augmented multiplexability. Also, the need for identification and quantification of relevant biomarkers at low levels requires outstanding analytical sensitivity and reliability. In addition, growing awareness of the advantages associated with miniaturization of analytical devices is pushing forward the progress in integrated and compact, microfluidic-based devices at the point-of-care. In this context, novel types of flow cytometers are emerging during the search to tackle these challenges. Notwithstanding the relevance of other promising alternatives to standard optical flow cytometry (e.g., mass cytometry, various optical and electrical microcytometers), this report focuses on a recent microcytometric technology based on magnetic sensors and magnetic particles integrated into microfluidic structures for dynamic bioanalysis of fluid samples-magnetic flow cytometry. Its concept, main developments, targeted applications, as well as the challenges and trends behind this technology are presented and discussed. Graphical abstract ᅟ "Kindly advise whether there is online abstract figure for this paper. If so, kindly resupply.The graphical abstract is correctly supplied.


Assuntos
Citometria de Fluxo/métodos , Magnetismo , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes
5.
Front Bioeng Biotechnol ; 12: 1337879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303911

RESUMO

The combination of a sensitive and specific magnetoresistive sensing device with an easy DNA extraction method and a rapid isothermal amplification is presented here targeting the on-site detection of Globodera pallida, a potato endoparasitic nematode. FTA-cards were used for DNA extraction, LAMP was the method developed for DNA amplification and a nanoparticle functionalized magnetic-biosensor was used for the detection. The combinatorial effect of these three emerging technologies has the capacity to detect G. pallida with a detection limit of one juvenile, even when mixed with other related species. This combined system is far more interesting than what a single technology can provide. Magnetic biosensors can be combined with any DNA extraction protocol and LAMP forming a new solution to target G. pallida. The probe designed in this study consistently distinguished G. pallida (∆Vac binding/Vac sensor above 1%) from other cyst nematodes (∆Vac binding/Vac sensor below 1%). It was confirmed that DNA either extracted with FTA-cards or Lab extraction Kit was of enough quantity and quality to detect G. pallida whenever present (alone or in mixed samples), ensuring probe specificity and sensitivity. This work provides insights for a new strategy to construct advanced devices for pathogens in-field diagnostics. LAMP runs separately but can be easily integrated into a single device.

6.
Biosens Bioelectron ; 210: 114302, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487137

RESUMO

The recent worldwide spread of viral infections has highlighted the need for accurate, fast, and inexpensive disease diagnosis and monitorization methods. Current diagnostics tend to focus either on molecular or serological testing. In this work we propose a dual detection assay approach for viral diseases, where both serological and molecular assays are combined in a single analysis performed on a magnetoresistive system. This type of assay guarantees an accurate assessment of the infection phase, saving time and costs associated with multiple independent tests. Zika and dengue viruses were used as model diseases for the validation of the system. Human IgG anti-zika and anti-dengue antibodies were successfully detected in infected patients' serum, using a novel approach combining competitive and sandwich strategies in a magnetoresistive portable platform. Specificity and sensitivity values of 100% were obtained. Calibration curves with dynamic ranges between 10 ng/mL and 1 µg/mL were established achieving LODs of 1.26 and 1.38 nM for IgG anti-ZIKV and anti-DENV antibodies, respectively. Viral RNA detection down to a few hundreds of pM was also successfully carried out after the design of specific oligo probes and primers for RT-PCR amplification. Dual assays were performed for both viruses, where viral RNA and anti-virus antibodies in serum samples were simultaneously detected. The results obtained for the detection of the molecular and serological targets in the dual assay format show no significant difference between the ones obtained individually, proving the feasibility and accuracy of the dual detection assay. This assay format represents a new paradigm in viral infections diagnostics.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Anticorpos Antivirais , Vírus da Dengue/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoglobulina G , RNA Viral , Sensibilidade e Especificidade , Zika virus/genética , Infecção por Zika virus/diagnóstico
7.
ACS Omega ; 7(41): 36543-36550, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278054

RESUMO

Magnetoresistive (MR) biosensors combine distinctive features such as small size, low cost, good sensitivity, and propensity to be arrayed to perform multiplexed analysis. Magnetic nanoparticles (MNPs) are the ideal target for this platform, especially if modified not only to overcome their intrinsic tendency to aggregate and lack of stability but also to realize an interacting surface suitable for biofunctionalization without strongly losing their magnetic response. Here, we describe an MR biosensor in which commercial MNP clusters were coated with gold nanoparticles (AuNPs) and used to detect human IgG in water using an MR biochip that comprises six sensing regions, each one containing five U-shaped spin valve sensors. The isolated AuNPs (satellites) were stuck onto an aggregate of individual iron oxide crystals (core) so that the resulting core@satellite magnetic particles (CSMPs) could be functionalized by the photochemical immobilization technique-an easy procedure that leads to oriented antibodies immobilized upright onto gold. The morphological, optical, hydrodynamic, magnetic, and surface charge properties of CSMPs were compared with those exhibited by the commercial MNP clusters showing that the proposed coating procedure endows the MNP clusters with stability and ductility without being detrimental to magnetic properties. Eventually, the high-performance MR biosensor allowed us to detect human IgG in water with a detection limit of 13 pM (2 ng mL-1). Given its portability, the biosensor described in this paper lends itself to a point-of-care device; moreover, the features of the MR biochip also make it suitable for multiplexed analysis.

8.
Sensors (Basel) ; 9(6): 4119-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22408516

RESUMO

This paper presents a prototype of a platform for biomolecular recognition detection. The system is based on a magnetoresistive biochip that performs biorecognition assays by detecting magnetically tagged targets. All the electronic circuitry for addressing, driving and reading out signals from spin-valve or magnetic tunnel junctions sensors is implemented using off-the-shelf components. Taking advantage of digital signal processing techniques, the acquired signals are processed in real time and transmitted to a digital analyzer that enables the user to control and follow the experiment through a graphical user interface. The developed platform is portable and capable of operating autonomously for nearly eight hours. Experimental results show that the noise level of the described platform is one order of magnitude lower than the one presented by the previously used measurement set-up. Experimental results also show that this device is able to detect magnetic nanoparticles with a diameter of 250 nm at a concentration of about 40 fM. Finally, the biomolecular recognition detection capabilities of the platform are demonstrated by performing a hybridization assay using complementary and non-complementary probes and a magnetically tagged 20mer single stranded DNA target.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31417901

RESUMO

Bovine mastitis is an inflammation of the mammary gland caused by a multitude of pathogens with devastating consequences for the dairy industry. Global annual losses are estimated to be around €30 bn and are caused by significant milk losses, poor milk quality, culling of chronically infected animals, and occasional deaths. Moreover, mastitis management routinely implies the administration of antibiotics to treat and prevent the disease which poses serious risks regarding the emergence of antibiotic resistance. Conventional diagnostic methods based on somatic cell counts (SCC) and plate-culture techniques are accurate in identifying the disease, the respective infectious agents and antibiotic resistant phenotypes. However, pressure exists to develop less lengthy approaches, capable of providing on-site information concerning the infection, and in this way, guide, and hasten the most adequate treatment. Biosensors are analytical tools that convert the presence of biological compounds into an electric signal. Benefitting from high signal-to-noise ratios and fast response times, when properly tuned, they can detect the presence of specific cells and cell markers with high sensitivity. In combination with microfluidics, they provide the means for development of automated and portable diagnostic devices. Still, while biosensors are growing at a fast pace in human diagnostics, applications for the veterinary market, and specifically, for the diagnosis of mastitis remain limited. This review highlights current approaches for mastitis diagnosis and describes the latest outcomes in biosensors and lab-on-chip devices with the potential to become real alternatives to standard practices. Focus is given to those technologies that, in a near future, will enable for an on-farm diagnosis of mastitis.

10.
Biointerphases ; 13(1): 011005, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402091

RESUMO

The use of targeted nanoparticles for magnetic hyperthermia (MHT) increases MHT selectivity, but often at the expense of its effectiveness. Consequently, targeted MHT is typically used in combination with other treatment modalities. This work describes an implementation of a highly effective monotherapeutic in vitro MHT treatment based on two populations of magnetic particles. Cells were sequentially incubated with two populations of magnetic particles: nonfunctionalized superparamagnetic nanoparticles and anti-CXCR4-functionalized particles. After removing the excess of free particles, an alternating magnetic field (AMF) was applied to produce MHT. The induced cytotoxicity was assessed at different time-points after AMF application. Complete loss of cell viability was observed 72 h after MHT when the iron loading of the anti-CXCR4-functionalized particles was boosted by that of a nontargeted population. Additionally, induction of necrosis resulted in more efficient cell death than did induction of apoptosis. Achieving a uniquely high effectiveness in monotherapeutic MHT demonstrates the potential of this approach to achieve complete loss of viability of cancer cells while avoiding the side effects of dual-treatment strategies that use MHT only as a sensitizing therapy.


Assuntos
Anticorpos/metabolismo , Hipertermia Induzida/métodos , Magnetismo , Terapia de Alvo Molecular/métodos , Nanopartículas/metabolismo , Receptores CXCR4/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Jurkat
11.
Biotechnol Annu Rev ; 9: 199-247, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14650928

RESUMO

Peroxidases have conquered a prominent position in biotechnology and associated research areas (enzymology, biochemistry, medicine, genetics, physiology, histo- and cytochemistry). They are one of the most extensively studied groups of enzymes and the literature is rich in research papers dating back from the 19th century. Nevertheless, peroxidases continue to be widely studied, with more than 2000 articles already published in 2002 (according to the Institute for Scientific Information). The importance of peroxidases is emphasised by their wide distribution among living organisms and by their multiple physiological roles. They have been divided into three superfamilies according to their source and mode of action: plant peroxidases, animal peroxidases and catalases. Among all peroxidases, horseradish peroxidase (HRP) has received a special attention and will be the focus of this review. A brief description of the three super-families is included in the first section of this review. In the second section, a comprehensive description of the present state of knowledge of the structure and catalytic action of HRP is presented. The physiological role of peroxidases in higher plants is described in the third section. And finally, the fourth section addresses the applications of peroxidases, especially HRP, in the environmental and health care sectors, and in the pharmaceutical, chemical and biotechnological industries.


Assuntos
Biotecnologia/instrumentação , Biotecnologia/métodos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Plantas/enzimologia , Sequência de Aminoácidos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Catálise , Glucose/análise , Dados de Sequência Molecular , Peroxidases/química , Peroxidases/classificação , Peroxidases/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA