RESUMO
Intriguingly, conducting perovskite interfaces between ordinary band insulators are widely explored, whereas similar interfaces with Mott insulators are still not quite understood. Here, we address the (001), (110), and (111) interfaces between the LaTiO_{3} Mott, and large band gap KTaO_{3} insulators. Based on first-principles calculations, we reveal a mechanism of interfacial conductivity, which is distinct from a formerly studied one applicable to interfaces between polar wideband insulators. Here, the key factor causing conductivity is the matching of oxygen octahedra tilting in KTaO_{3} and LaTiO_{3} which, due to a small gap in the LaTiO_{3} results in its sensitivity to the crystal structure, yields metallization of its overlayer and following charge transfer from Ti to Ta. Our findings, also applicable to other Mott insulators interfaces, shed light on the emergence of conductivity observed in LaTiO_{3}/KTaO_{3} (110) where the "polar" arguments are not applicable and on the emergence of superconductivity in these structures.
RESUMO
We report magnetotransport measurements on a high-mobility two-dimensional electron system at the nonmagnetic MgZnO/ZnO heterointerface showing distinct behavior for electrons with spin-up and spin-down orientations. The low-field Shubnikov-de Haas oscillations manifest alternating resistance peak heights which can be attributed to distinct scattering rates for different spin orientations. The tilt-field measurements at a half-integer filling factor reveal that the majority spins show usual diffusive behavior, i.e., peaks with the magnitude proportional to the index of the Landau level at the Fermi energy. By contrast, the minority spins develop "plateaus" with the magnitude of dissipative resistivity that is fairly independent of the Landau level index and is of the order of the zero-field resistivity.
RESUMO
The sequence of prominent fractional quantum Hall states up to ν=5/11 around ν=1/2 in a high-mobility two-dimensional electron system confined at oxide heterointerface (ZnO) is analyzed in terms of the composite fermion model. The temperature dependence of R(xx) oscillations around ν=1/2 yields an estimation of the composite fermion effective mass, which increases linearly with the magnetic field. This mass is of similar value to an enhanced electron effective mass, which in itself arises from strong electron interaction. The energy gaps of fractional states and the temperature dependence of R(xx) at ν=1/2 point to large residual interactions between composite fermions.
RESUMO
The quantum Hall effect arises from the cyclotron motion of charge carriers in two-dimensional systems. However, the ground states related to the integer and fractional quantum Hall effect, respectively, are of entirely different origin. The former can be explained within a single-particle picture; the latter arises from electron correlation effects governed by Coulomb interaction. The prerequisite for the observation of these effects is extremely smooth interfaces of the thin film layers to which the charge carriers are confined. So far, experimental observations of such quantum transport phenomena have been limited to a few material systems based on silicon, III-V compounds and graphene. In ionic materials, the correlation between electrons is expected to be more pronounced than in the conventional heterostructures, owing to a large effective mass of charge carriers. Here we report the observation of the fractional quantum Hall effect in MgZnO/ZnO heterostructures grown by molecular-beam epitaxy, in which the electron mobility exceeds 180,000 cm(2) V(-1) s(-1). Fractional states such as ν = 4/3, 5/3 and 8/3 clearly emerge, and the appearance of the ν = 2/5 state is indicated. The present study represents a technological advance in oxide electronics that provides opportunities to explore strongly correlated phenomena in quantum transport of dilute carriers.
RESUMO
Spin-orbit coupling (SOC) is pivotal for various fundamental spin-dependent phenomena in solids and their technological applications. In semiconductors, these phenomena have been so far studied in relatively weak electron-electron interaction regimes, where the single electron picture holds. However, SOC can profoundly compete against Coulomb interaction, which could lead to the emergence of unconventional electronic phases. Since SOC depends on the electric field in the crystal including contributions of itinerant electrons, electron-electron interactions can modify this coupling. Here we demonstrate the emergence of the SOC effect in a high-mobility two-dimensional electron system in a simple band structure MgZnO/ZnO semiconductor. This electron system also features strong electron-electron interaction effects. By changing the carrier density with Mg-content, we tune the SOC strength and achieve its interplay with electron-electron interaction. These systems pave a way to emergent spintronic phenomena in strong electron correlation regimes and to the formation of quasiparticles with the electron spin strongly coupled to the density.
RESUMO
Interactions between the constituents of a condensed matter system can drive it through a plethora of different phases due to many-body effects. A prominent platform for it is a dilute two-dimensional electron system in a magnetic field, which evolves intricately through various gaseous, liquid and solid phases governed by Coulomb interaction. Here we report on the experimental observation of a phase transition between the composite fermion liquid and adjacent magnetic field induced phase with a character of Wigner solid. The experiments are performed in the lowest Landau level of a MgZnO/ZnO two-dimensional electron system with attributes of both a liquid and a solid. An in-plane magnetic field component applied on top of the perpendicular magnetic field extends the Wigner-like phase further into the composite fermion liquid phase region. Our observations indicate the direct competition between a composite fermion liquid and a Wigner solid formed either by electrons or composite fermions.
RESUMO
Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini-Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system.
RESUMO
The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems.