Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 18(9): 1687-1695, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37193935

RESUMO

PURPOSE: Endovascular interventions require intense practice to develop sufficient dexterity in catheter handling within the human body. Therefore, we present a modular training platform, featuring 3D-printed vessel phantoms with patient-specific anatomy and integrated piezoresistive impact force sensing of instrument interaction at clinically relevant locations for feedback-based skill training to detect and reduce damage to the delicate vascular wall. METHODS: The platform was fabricated and then evaluated in a user study by medical ([Formula: see text]) and non-medical ([Formula: see text]) users. The users had to navigate a set of guidewire and catheter through a parkour of 3 modules including an aneurismatic abdominal aorta, while impact force and completion time were recorded. Eventually, a questionnaire was conducted. RESULTS: The platform allowed to perform more than 100 runs in which it proved capable to distinguish between users of different experience levels. Medical experts in the fields of vascular and visceral surgery had a strong performance assessment on the platform. It could be shown, that medical students could improve runtime and impact over 5 runs. The platform was well received and rated as promising for medical education despite the experience of higher friction compared to real human vessels. CONCLUSION: We investigated an authentic patient-specific training platform with integrated sensor-based feedback functionality for individual skill training in endovascular surgery. The presented method for phantom manufacturing is easily applicable to arbitrary patient-individual imaging data. Further work shall address the implementation of smaller vessel branches, as well as real-time feedback and camera imaging for further improved training experience.


Assuntos
Educação Médica , Procedimentos Endovasculares , Humanos , Cateterismo , Catéteres , Aorta Abdominal , Competência Clínica
2.
Front Surg ; 8: 742160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869554

RESUMO

Robotic systems for surgery of the inner ear must enable highly precise movement in relation to the patient. To allow for a suitable collaboration between surgeon and robot, these systems should not interrupt the surgical workflow and integrate well in existing processes. As the surgical microscope is a standard tool, present in almost every microsurgical intervention and due to it being in close proximity to the situs, it is predestined to be extended by assistive robotic systems. For instance, a microscope-mounted laser for ablation. As both, patient and microscope are subject to movements during surgery, a well-integrated robotic system must be able to comply with these movements. To solve the problem of on-line registration of an assistance system to the situs, the standard of care often utilizes marker-based technologies, which require markers being rigidly attached to the patient. This not only requires time for preparation but also increases invasiveness of the procedure and the line of sight of the tracking system may not be obstructed. This work aims at utilizing the existing imaging system for detection of relative movements between the surgical microscope and the patient. The resulting data allows for maintaining registration. Hereby, no artificial markers or landmarks are considered but an approach for feature-based tracking with respect to the surgical environment in otology is presented. The images for tracking are obtained by a two-dimensional RGB stream of a surgical microscope. Due to the bony structure of the surgical site, the recorded cochleostomy scene moves nearly rigidly. The goal of the tracking algorithm is to estimate motion only from the given image stream. After preprocessing, features are detected in two subsequent images and their affine transformation is computed by a random sample consensus (RANSAC) algorithm. The proposed method can provide movement feedback with up to 93.2 µm precision without the need for any additional hardware in the operating room or attachment of fiducials to the situs. In long term tracking, an accumulative error occurs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA