RESUMO
Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here, we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.
Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Leveduras/genéticaRESUMO
Although spatial and temporal variation are both important components structuring microbial communities, the exact quantification of temporal turnover rates of fungi and bacteria has not been performed to date. In this study, we utilised repeated resampling of bacterial and fungal communities at specific locations across multiple years to describe their patterns and rates of temporal turnover. Our results show that microbial communities undergo temporal change at a rate of 0.010-0.025 per year (in units of Sorensen similarity), and the change in soil is slightly faster in fungi than in bacteria, with bacterial communities changing more rapidly in litter than soil. Importantly, temporal development differs across fungal guilds and bacterial phyla with different ecologies. While some microbial guilds show consistent responses across regional locations, others show site-specific development with weak general patterns. These results indicate that guild-level resolution is important for understanding microbial community assembly, dynamics and responses to environmental factors.
Assuntos
Microbiota , Micobioma , Fungos , Solo , Microbiologia do SoloRESUMO
One hundred and ninety-eight isolates of soil yeasts were isolated from mixed temperate forests in the Czech Republic, and their abundance and distribution in the litter and soil were evaluated using amplicon sequencing of soil fungal communities. Abundant taxa with no close identified hits were selected for further characterization as potential novel species of yeasts. Phylogenetic analyses using sequences of the D1/D2 domain, the ITS region and RPB1 and TEF1 genes support the recognition of the following three novel species belonging to the subphylum Pucciniomycotina, class Microbotryomycetes: Leucosporidium krtinense f.a. sp. nov. (type strain PYCC 6879T=KT96T=CBS 14304T=DSM 101892T), Yurkovia mendeliana sp. nov. (type strain PYCC 6884T=KT152T=CBS 14273T=DSM 101889T) and Libkindia masarykiana sp. nov. (type strain PYCC 6886T=KT310T=CBS 14275T=DSM 101891T). Since the latter two novel taxa cannot be assigned to existing genera, two new genera, Libkindia gen. nov. and Yurkovia gen. nov., are also described.
Assuntos
Basidiomycota/classificação , Florestas , Filogenia , Microbiologia do Solo , Composição de Bases , Basidiomycota/genética , Basidiomycota/isolamento & purificação , República Tcheca , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Genes Fúngicos , Análise de Sequência de DNARESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Assuntos
Código de Barras de DNA Taxonômico , Fungos/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Micobioma , Microbiologia do Solo , Plantas/microbiologiaRESUMO
Due to the ability of soil bacteria to solubilize minerals, fix N2 and mobilize nutrients entrapped in the organic matter, their role in nutrient turnover and plant fitness is of high relevance in forest ecosystems. Although several authors have already studied the organic matter decomposing enzymes produced by soil and plant root-interacting bacteria, most of the works did not account for the activity of cell wall-attached enzymes. Therefore, the enzyme deployment strategy of three bacterial collections (genera Luteibacter, Pseudomonas and Arthrobacter) associated with Quercus spp. roots was investigated by exploring both cell-bound and freely-released hydrolytic enzymes. We also studied the potential of these bacterial collections to produce enzymes involved in the transformation of plant and fungal biomass. Remarkably, the cell-associated enzymes accounted for the vast majority of the total activity detected among Luteibacter strains, suggesting that they could have developed a strategy to maintain the decomposition products in their vicinity, and therefore to reduce the diffusional losses of the products. The spectrum of the enzymes synthesized and the titres of activity were diverse among the three bacterial genera. While cellulolytic and hemicellulolytic enzymes were rather common among Luteibacter and Pseudomonas strains and less detected in Arthrobacter collection, the activity of lipase was widespread among all the tested strains. Our results indicate that a large fraction of the extracellular enzymatic activity is due to cell wall-attached enzymes for some bacteria, and that Quercus spp. root bacteria could contribute at different levels to carbon (C), phosphorus (P) and nitrogen (N) cycles.
Assuntos
Bactérias/citologia , Bactérias/metabolismo , Parede Celular/enzimologia , Endófitos , Compostos Orgânicos/metabolismo , Quercus/microbiologia , Rizosfera , Bactérias/enzimologia , Hidrólise , Solo/químicaRESUMO
The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa.
Assuntos
Clima , Fungos/fisiologia , Internacionalidade , Biodiversidade , Filogeografia , Chuva , Especificidade da Espécie , TemperaturaRESUMO
Forest management practices often severely affect forest ecosystem functioning. Tree removal by clearcutting is one such practice, producing severe impacts due to the total reduction of primary productivity. Here, we assessed changes to fungal community structure and decomposition activity in the soil, roots and rhizosphere of a Picea abies stand for a 2-year period following clearcutting compared to data from before tree harvest. We found that the termination of photosynthate flow through tree roots into soil is associated with profound changes in soil, both in decomposition processes and fungal community composition. The rhizosphere, representing an active compartment of high enzyme activity and high fungal biomass in the living stand, ceases to exist and starts to resemble bulk soil. Decomposing roots appear to separate from bulk soil and develop into hotspots of decomposition and important fungal biomass pools. We found no support for the involvement of ectomycorrhizal fungi in the decomposition of roots, but we found some evidence that root endophytic fungi may have an important role in the early stages of this process. In soil, activity of extracellular enzymes also decreased in the long term following the end of rhizodeposition by tree roots.
Assuntos
Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Pinus/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biomassa , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Micobioma , Micorrizas/classificação , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Rizosfera , Solo/química , Árvores/microbiologiaRESUMO
Fungi represent a group of soil microorganisms fulfilling important ecological functions. Although several studies have shown that yeasts represent a significant proportion of fungal communities, our current knowledge is based mainly on cultivation experiments. In this study, we used amplicon sequencing of environmental DNA to describe the composition of yeast communities in European temperate forest and to identify the potential biotic and abiotic drivers of community assembly. Based on the analysis of ITS2 PCR amplicons, yeasts represented a substantial proportion of fungal communities ranging from 0.4 to 14.3% of fungal sequences in soil and 0.2 to 9.9% in litter. The species richness at individual sites was 28 ± 9 in soil and 31 ± 11 in litter. The basidiomycetous yeasts dominated over ascomycetous ones. In litter, yeast communities differed significantly among beech-, oak- and spruce-dominated stands. Drivers of community assembly are probably more complex in soils and comprise the effects of environmental conditions and vegetation.