Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 16(7): 4251-9, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27243108

RESUMO

We present a high-resolution distance dependence study of surface-enhanced Raman scattering (SERS) enabled by atomic layer deposition (ALD) at 55 and 100 °C. ALD is used to deposit monolayers of Al2O3 on bare silver film over nanospheres (AgFONs) and AgFONs functionalized with self-assembled monolayers. Operando SERS is used to measure the intensities of the Al-CH3 and C-H stretches from trimethylaluminum (TMA) as a function of distance from the AgFON surface. This study clearly demonstrates that SERS on AgFON substrates displays both a short- and long-range nanometer scale distance dependence. Excellent agreement is obtained between these experiments and theory that incorporates both short-range and long-range terms. This is a high-resolution operando SERS distance dependence study performed in one integrated experiment using ALD Al2O3 as the spacer layer and Raman label simultaneously. The long-range SERS distance dependence should make it possible to detect chemisorbed surface species located as far as ∼3 nm from the AgFON substrate and will provide new insight into the surface chemistry of ALD and catalytic reactions.

2.
ACS Nano ; 8(8): 7639-47, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24956125

RESUMO

This paper describes how the ability to tune each nanoparticle in a plasmonic hetero-oligomer can optimize architectures for plasmon-enhanced applications. We demonstrate how a large-area nanofabrication approach, reconstructable mask lithography (RML), can achieve independent control over the size, position, and material of up to four nanoparticles within a subwavelength unit. We show how arrays of plasmonic hetero-oligomers consisting of strong plasmonic materials (Au) and reactant-specific elements (Pd) provide a unique platform for enhanced hydrogen gas sensing. Using finite-difference time-domain simulations, we modeled different configurations of Au­Pd hetero-oligomers and compared their hydrogen gas sensing capabilities. In agreement with calculations, we found that Au­Pd nanoparticle dimers showed a red-shift and that Au­Pd trimers with touching Au and Pd nanoparticles showed a blue-shift upon exposure to both high and low concentrations of hydrogen gas. Both Au­Pd hetero-oligomer sensors displayed high sensitivity, fast response times, and excellent recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA