Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 172: 105832, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907632

RESUMO

Synaptojanin 2 binding protein (SYNJ2BP) is an outer mitochondrial membrane protein with a cytosolic PDZ domain that functions as a cellular signaling hub. Few studies have evaluated its role in disease. Here we use induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem tissue from patients with two hereditary motor neuron diseases, spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis type 4 (ALS4), and show that SYNJ2BP expression is increased in diseased motor neurons. Similarly, we show that SYNJ2BP expression increases in iPSC-derived motor neurons undergoing stress. Using proteomic analysis, we found that elevated SYNJ2BP alters the cellular distribution of mitochondria and increases mitochondrial-ER membrane contact sites. Furthermore, decreasing SYNJ2BP levels improves mitochondrial oxidative function in the diseased motor neurons. Together, our observations offer new insight into the molecular pathology of motor neuron disease and the role of SYNJ2BP in mitochondrial dysfunction.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Atrofia Muscular Espinal , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Proteômica
2.
Kidney Int ; 98(3): 630-644, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446934

RESUMO

Kidney function and blood pressure homeostasis are regulated by purinergic signaling mechanisms. These autocrine/paracrine signaling pathways are initiated by the release of cellular ATP, which influences kidney hemodynamics and steady-state renin secretion from juxtaglomerular cells. However, the mechanism responsible for ATP release that supports tonic inputs to juxtaglomerular cells and regulates renin secretion remains unclear. Pannexin 1 (Panx1) channels localize to both afferent arterioles and juxtaglomerular cells and provide a transmembrane conduit for ATP release and ion permeability in the kidney and the vasculature. We hypothesized that Panx1 channels in renin-expressing cells regulate renin secretion in vivo. Using a renin cell-specific Panx1 knockout model, we found that male Panx1 deficient mice exhibiting a heightened activation of the renin-angiotensin-aldosterone system have markedly increased plasma renin and aldosterone concentrations, and elevated mean arterial pressure with altered peripheral hemodynamics. Following ovariectomy, female mice mirrored the male phenotype. Furthermore, constitutive Panx1 channel activity was observed in As4.1 renin-secreting cells, whereby Panx1 knockdown reduced extracellular ATP accumulation, lowered basal intracellular calcium concentrations and recapitulated a hyper-secretory renin phenotype. Moreover, in response to stress stimuli that lower blood pressure, Panx1-deficient mice exhibited aberrant "renin recruitment" as evidenced by reactivation of renin expression in pre-glomerular arteriolar smooth muscle cells. Thus, renin-cell Panx1 channels suppress renin secretion and influence adaptive renin responses when blood pressure homeostasis is threatened.


Assuntos
Conexinas , Renina , Trifosfato de Adenosina , Animais , Pressão Sanguínea , Conexinas/genética , Feminino , Homeostase , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
3.
JCI Insight ; 5(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641584

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by a polyglutamine expansion in the androgen receptor (AR). Using gene expression analysis and ChIP sequencing, we mapped transcriptional changes in genetically engineered patient stem cell-derived motor neurons. We found that transcriptional dysregulation in SBMA can occur through AR-mediated histone modification. We detected reduced histone acetylation, along with decreased expression of genes encoding compensatory metabolic proteins and reduced substrate availability for mitochondrial function. Furthermore, we found that pyruvate supplementation corrected this deficiency and improved mitochondrial function and SBMA motor neuron viability. We propose that epigenetic dysregulation of metabolic genes contributes to reduced mitochondrial ATP production. Our results show a molecular link between altered epigenetic regulation and mitochondrial metabolism that contributes to neurodegeneration.


Assuntos
Epigênese Genética/fisiologia , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Humanos , Atrofia Muscular Espinal/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA