Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203317

RESUMO

In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy. Their compatibility with chemical modifications enhances their binding affinity and resistance to degradation, elevating their effectiveness in targeted applications. Additionally, nucleic acids have found utility as self-assembling building blocks, leading to the creation of nanostructures whose high order underpins their enhanced biological stability and affects the cellular uptake efficiency. Furthermore, this review delves into the significant role of oligonucleotides (ODNs) as indispensable tools for biological studies and biomarker discovery. ODNs, short sequences of nucleic acids, have been instrumental in unraveling complex biological mechanisms. They serve as probes for studying gene expression, protein interactions, and cellular pathways, providing invaluable insights into fundamental biological processes. By examining the synergistic interplay between nucleic acids as powerful biomaterials and ODNs as indispensable tools for biological studies and biomarkers, this review highlights the transformative impact of these molecules on biomedical research. Their versatile applications not only deepen our understanding of biological systems but also are the driving force for innovation in diagnostics and therapeutics, ultimately advancing the field of biomedicine.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/uso terapêutico , Oligonucleotídeos/uso terapêutico , RNA , Materiais Biocompatíveis/uso terapêutico , Transporte Biológico
2.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770853

RESUMO

Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii , Humanos , Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Suplementos Nutricionais , Plantas
3.
J Appl Toxicol ; 41(12): 1980-1997, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982300

RESUMO

Despite the widespread use of silver nanoparticles (AgNPs) in different fields and the amount of investigations available, to date, there are many contradictory results on their potential toxicity. In the present study, extensively characterized 20-nm AgNPs were investigated using optimized protocols and standardized methods to test several toxicological endpoints in different cell lines. The agglomeration/aggregation state of AgNPs in culture media was measured by dynamic light scattering (DLS). DNA and chromosomal damage on BEAS-2B and RAW 264.7 cells were evaluated by comet and micronucleus assays, while oxidative DNA damage by modified comet assay and 8-oxodG/8-oxodA detection. We also investigated immunotoxicity and immunomodulation by cytokine release and NO production in RAW 264.7 and MH-S cells, with or without lipopolysaccharide (LPS) stimulus. Transmission electron microscope (TEM) analysis was used to analyze cellular uptake of AgNPs. Our results indicate different values of AgNPs hydrodynamic diameter depending on the medium, some genotoxic effect just on BEAS-2B and no or slight effects on function of RAW 264.7 and MH-S in absence or presence of LPS stimulus. This study highlights the relevance of using optimized protocols and multiple endpoints to analyze the potential toxicity of AgNPs and to obtain reliable and comparable results.


Assuntos
Técnicas In Vitro/métodos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Testes de Toxicidade/métodos , Linhagem Celular , Ensaio Cometa , Testes para Micronúcleos
4.
J Am Chem Soc ; 142(12): 5825-5833, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32129616

RESUMO

The reaction of HO• radical with DNA is intensively studied both mechanistically and analytically for lesions formation. Several aspects related to the reaction paths of purine moieties with the formation of 5',8-cyclopurines (cPu), 8-oxopurines (8-oxo-Pu), and their relationship are not well understood. In this study, we investigated the reaction of HO• radical with a 21-mer double-stranded oligodeoxynucleotide (ds-ODNs) in γ-irradiated aqueous solutions under various oxygen concentrations and accurately quantified the six purine lesions (i.e., four cPu and two 8-oxo-Pu) by LC-MS/MS analysis using isotopomeric internal standards. In the absence of oxygen, 8-oxo-Pu lesions are only ∼4 times more than cPu lesions. By increasing oxygen concentration, the 8-oxo-Pu and the cPu gradually increase and decrease, respectively, reaching a gap of ∼130 times at 2.01 × 10-4 M of O2. Kinetic treatment of the data allows to estimate the C5' radical competition between cyclization and oxygen trapping in ds-ODNs, and lastly the rate constants of the four cyclization steps. Tailored computational studies by means of dispersion-corrected DFT calculations were performed on the CGC and TAT in their double-strand models for each cPu diastereoisomer along with the complete reaction pathways of the cyclization steps. Our findings reveal unheralded reaction mechanisms that resolve the long-standing issues with C5' radical cyclization in purine moieties of DNA sequences.

5.
Biochemistry ; 58(6): 561-574, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30570250

RESUMO

The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.


Assuntos
Adutos de DNA/química , Dano ao DNA , Reparo do DNA , DNA/química , Nucleossomos/química , Purinas/química , Adutos de DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Nucleossomos/genética
6.
Molecules ; 24(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717733

RESUMO

The reaction of hydroxyl radical (HO•) with DNA produces many primary reactive species and many lesions as final products. In this study, we have examined the optical spectra of intermediate species derived from the reaction of HO• with a variety of single- and double-stranded oligodeoxynucleotides and ct-DNA in the range of 1 µs to 1 ms by pulse radiolysis using an Intensified Charged Coupled Device (ICCD) camera. Moreover, we applied our published analytical protocol based on an LC-MS/MS system with isotopomeric internal standards to enable accurate and precise measurements of purine lesion formation. In particular, the simultaneous measurement of the four purine 5',8-cyclo-2'-deoxynucleosides (cPu) and two 8-oxo-7,8-dihydro-2'-deoxypurine (8-oxo-Pu) was obtained upon reaction of genetic material with HO• radicals generated either by γ-radiolysis or Fenton-type reactions. Our results contributed to the debate in the literature regarding absolute level of lesions, method of HO• radical generation, 5'R/5'S diastereomeric ratio in cPu, and relative abundance between cPu and 8-oxo-Pu.


Assuntos
DNA/química , Radical Hidroxila/química , Oligodesoxirribonucleotídeos/química , Animais , Dano ao DNA/genética , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Purinas/química
7.
Nucleic Acids Res ; 42(22): 13749-63, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25428354

RESUMO

5',8-cyclo-2'-deoxypurines (cdPus) are common forms of oxidized DNA lesions resulting from endogenous and environmental oxidative stress such as ionizing radiation. The lesions can only be repaired by nucleotide excision repair with a low efficiency. This results in their accumulation in the genome that leads to stalling of the replication DNA polymerases and poor lesion bypass by translesion DNA polymerases. Trinucleotide repeats (TNRs) consist of tandem repeats of Gs and As and therefore are hotspots of cdPus. In this study, we provided the first evidence that both (5'R)- and (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in a CAG repeat tract caused CTG repeat deletion exclusively during DNA lagging strand maturation and base excision repair. We found that a cdA induced the formation of a CAG loop in the template strand, which was skipped over by DNA polymerase ß (pol ß) lesion bypass synthesis. This subsequently resulted in the formation of a long flap that was efficiently cleaved by flap endonuclease 1, thereby leading to repeat deletion. Our study indicates that accumulation of cdPus in the human genome can lead to TNR instability via a unique lesion bypass by pol ß.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , Desoxiadenosinas/química , Repetições de Trinucleotídeos , DNA/biossíntese , DNA/química , DNA/metabolismo , Endonucleases Flap/metabolismo , Deleção de Sequência , Moldes Genéticos
8.
Nucleic Acids Res ; 42(8): 5020-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24615810

RESUMO

The hydroxyl radical is a powerful oxidant that generates DNA lesions including the stereoisomeric R and S 5',8-cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) pairs that have been detected in cellular DNA. Unlike some other oxidatively generated DNA lesions, cdG and cdA are repaired by the human nucleotide excision repair (NER) apparatus. The relative NER efficiencies of all four cyclopurines were measured and compared in identical human HeLa cell extracts for the first time under identical conditions, using identical sequence contexts. The cdA and cdG lesions were excised with similar efficiencies, but the efficiencies for both 5'R cyclopurines were greater by a factor of ∼2 than for the 5'S lesions. Molecular modeling and dynamics simulations have revealed structural and energetic origins of this difference in NER-incision efficiencies. These lesions cause greater DNA backbone distortions and dynamics relative to unmodified DNA in 5'R than in 5'S stereoisomers, producing greater impairment in van der Waals stacking interaction energies in the 5'R cases. The locally impaired stacking interaction energies correlate with relative NER incision efficiencies, and explain these results on a structural basis in terms of differences in dynamic perturbations of the DNA backbone imposed by the R and S covalent 5',8 bonds.


Assuntos
Reparo do DNA , Desoxiadenosinas/química , Desoxiguanosina/análogos & derivados , DNA/química , Dano ao DNA , Desoxiguanosina/química , Células HeLa , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estereoisomerismo
9.
Biochemistry ; 54(27): 4181-5, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26091016

RESUMO

In nucleosomes, the access of DNA lesions to nucleotide excision repair is hindered by histone proteins. However, evidence that the nature of the DNA lesions may play a role in facilitating access is emerging, but these phenomena are not well-understood. We have used molecular dynamics simulations to elucidate the structural, dynamic, and energetic properties of the R and S 5'-8-cyclo-2'-dG and the (+)-cis-anti-B[a]P-dG lesions in a nucleosome. Our results show that the (+)-cis-anti-B[a]P-dG adduct is more dynamic and more destabilizing than the smaller and more constrained 5',8-cyclo-2'-dG lesions, suggesting more facile access to the more bulky (+)-cis-anti-B[a]P-dG lesion.


Assuntos
Reparo do DNA , Nucleossomos/química , DNA/química , Adutos de DNA/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Termodinâmica
10.
Inorg Chem ; 52(1): 321-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23244699

RESUMO

We investigated with spectroscopic techniques the noncovalent interaction of a bimetallic water-soluble (Zn(II)/Pt(II)) porphyrazine hexacation, [(PtCl(2))(CH(3))(6)LZn](6+), and its octacationic analogue [(CH(3))(8)LZn](8+), lacking the cis-platin-like functionality, with a 21-mer double strand (ds) 5'-d[GGG(TTAGGG)(3)]-3'/3'-d[CCC(AATCCC)(3)]-5', as model for B-DNA. Both hexacation and octacation tend to aggregate in water. The structure as well as the ground and excited-state electronic properties of the Zn(II)/Pt(II) hexacation [(PtCl(2))(CH(3))(6)LZn](6+) in water solution were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods. TDDFT calculations of the lowest excited states of [(PtCl(2))(CH(3))(6)LZn](6+) in water provided an accurate description of the Q-band spectral region. In particular, the calculated optical spectra were in agreement with the experimental ones, obtained in the presence of micelles favoring complete disruption of the aggregates. The model for dsDNA binding that emerges from the analysis of UV-vis absorption and time-resolved fluorescence data shows the presence of complexes of 1 dsDNA molecule with 1, 2, and 4 macrocycles. Comparing the results for the hexacation [(PtCl(2))(CH(3))(6)LZn](6+) with those for the [(CH(3))(8)LZn](8+)octacation, we observed a higher degree of monomerization for the [(PtCl(2))(CH(3))(6)LZn](6+) derivative.


Assuntos
Antineoplásicos/química , DNA/química , Compostos Organometálicos/química , Platina/química , Porfirinas/química , Pirazinas/química , Piridinas/química , Zinco/química , Antineoplásicos/síntese química , Estrutura Molecular , Compostos Organometálicos/síntese química , Teoria Quântica , Espectrofotometria Ultravioleta
11.
Biomolecules ; 13(10)2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37892175

RESUMO

We examined the reaction of hydroxyl radicals (HO•) and sulfate radical anions (SO4•-), which is generated by ionizing radiation in aqueous solutions under anoxic conditions, with an alternating GC doubled-stranded oligodeoxynucleotide (ds-ODN), i.e., the palindromic 5'-d(GCGCGC)-3'. In particular, the optical spectra of the intermediate species and associated kinetic data in the range of ns to ms were obtained via pulse radiolysis. Computational studies by means of density functional theory (DFT) for structural and time-dependent DFT for spectroscopic features were performed on 5'-d(GCGC)-3'. Comprehensively, our results suggest the addition of HO• to the G:C pair moiety, affording the [8-HO-G:C]• detectable adduct. The previous reported spectra of one-electron oxidation of a variety of ds-ODN were assigned to [G(-H+):C]• after deprotonation. Regarding 5'-d(GCGCGC)-3' ds-ODN, the spectrum at 800 ns has a completely different spectral shape and kinetic behavior. By means of calculations, we assigned the species to [G:C/C:G]•+, in which the electron hole is predicted to be delocalized on the two stacked base pairs. This transient species was further hydrated to afford the [8-HO-G:C]• detectable adduct. These remarkable findings suggest that the double-stranded alternating GC sequences allow for a new type of electron hole stabilization via delocalization over the whole sequence or part of it.


Assuntos
Radical Hidroxila , Oligonucleotídeos , Oligonucleotídeos/química , Elétrons , Radicais Livres/química , Oxirredução , Oligodesoxirribonucleotídeos
12.
Chimia (Aarau) ; 66(6): 368-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22871276

RESUMO

The biological consequences of free radical production is the central subject of a very lively scientific debate, focusing on the estimation of the type and extent of damage, as well as the efficiency of the protective and repair systems. When studying free radical based chemical mechanisms, it is very important to establish biomimetic models, which allow the experiments to be performed in a simplified environment, but suitably designed to be in strict connection with cellular conditions. The biomimetic modeling approach has been coupled with physical organic chemistry methodologies and knowledge of free radical reactivity. Molecular basis of important processes have been identified, building up molecular libraries of products concerning unsaturated lipids, sulfur-containing proteins and nucleic acids, to be developed as biomarkers. Ongoing projects in our group deal with lipidomics, genomics and proteomics of free radical stress and some examples will be described.


Assuntos
Biomimética , Radicais Livres/metabolismo , Modelos Biológicos , Biomarcadores/química , Biomarcadores/metabolismo , Radicais Livres/química
13.
Cells ; 11(8)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35455966

RESUMO

Oxygen is important for lipid metabolism, being involved in both enzymatic transformations and oxidative reactivity, and is particularly influent when genetic diseases impair the repair machinery of the cells, such as described for Cockayne syndrome (CS). We used two cellular models of transformed fibroblasts defective for CSA and CSB genes and their normal counterparts, grown for 24 h under various oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%) to examine the fatty acid-based membrane remodeling by GC analysis of fatty acid methyl esters derived from membrane phospholipids. Overall, we first distinguished differences due to oxygen tensions: (a) hyperoxia induced a general boost of desaturase enzymatic activity in both normal and defective CSA and CSB cell lines, increasing monounsaturated fatty acids (MUFA), whereas polyunsaturated fatty acids (PUFA) did not undergo oxidative consumption; (b) hypoxia slowed down desaturase activities, mostly in CSA cell lines and defective CSB, causing saturated fatty acids (SFA) to increase, whereas PUFA levels diminished, suggesting their involvement in hypoxia-related signaling. CSB-deprived cells are the most sensitive to oxidation and CSA-deprived cells are the most sensitive to the radical-based formation of trans fatty acids (TFA). The results point to the need to finely differentiate biological targets connected to genetic impairments and, consequently, suggest the better definition of cell protection and treatments through accurate molecular profiling that includes membrane lipidomes.


Assuntos
Síndrome de Cockayne , Síndrome de Cockayne/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Humanos , Hipóxia , Lipidômica , Oxigênio
14.
Biomolecules ; 12(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358980

RESUMO

Mitochondrial (mt) DNA and nuclear (n) DNA have known structures and roles in cells; however, they are rarely compared under specific conditions such as oxidative or degenerative environments that can create damage to the DNA base moieties. Six purine lesions were ascertained in the mtDNA of wild type (wt) CSA (CS3BE-wtCSA) and wtCSB (CS1AN-wtCSB) cells and defective counterparts CS3BE and CS1AN in comparison with the corresponding total (t) DNA (t = n + mt). In particular, the four 5',8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. The 8-oxo-Pu levels were found to be in the range of 25-50 lesions/107 nucleotides in both the mtDNA and tDNA. The four cPu were undetectable in the mtDNA both in defective cells and in the wt counterparts (CSA and CSB), contrary to their detection in tDNA, indicating a nonappearance of hydroxyl radical (HO•) reactivity within the mtDNA. In order to assess the HO• reactivity towards purine nucleobases in the two genetic materials, we performed γ-radiolysis experiments coupled with the 8-oxo-Pu and cPu quantifications on isolated mtDNA and tDNA from wtCSB cells. In the latter experiments, all six purine lesions were detected in both of the DNA, showing a higher resistance to HO• attack in the case of mtDNA compared with tDNA, likely due to their different DNA helical topology influencing the relative abundance of the lesions.


Assuntos
Síndrome de Cockayne , Humanos , Dano ao DNA , DNA Mitocondrial/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Purinas
15.
Photochem Photobiol Sci ; 10(8): 1326-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21655621

RESUMO

We studied the binding of two anthracycline drugs, Doxorubicin and Sabarubicin, to a model telomeric sequence 5'-d[GGG(TTAGGG)(3)]-3' (21-mer), assuming the basket G-quadruplex (G4) conformation in Na(+)-rich aqueous solution. We used an approach that combines spectroscopic and microcalorimetric techniques to obtain information about ground and excited state properties of the most stable complexes. Both drugs bind to the 21-mer in basket conformation and complexes of 1:1 and 2:1 drug : 21-mer stoichiometry coexist in solution. Binding constants were determined from fluorescence and isothermal titration calorimetry experiments. For both drugs association is driven by enthalpy and disfavoured by entropy in the case of two sequential binding events to different sites. The drug fluorescence is completely quenched in the 1:1 complex, most likely by electron transfer from the guanine system to the anthraquinone moiety, while part of the emission survives in the 2:1 complex. Circular dichroism (CD) of the individual complexes is dominated by the G-quadruplex signal in the UV and by the anthracycline signal in the near-UV and Vis region. The experimental CD spectra combined with conformational calculations at MM level and quantum mechanical calculation of the rotational strength of the electronic transitions afforded information on the binding geometries.


Assuntos
Antibióticos Antineoplásicos/química , Dissacarídeos/química , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Quadruplex G , Sequência de Bases , Dicroísmo Circular , Conformação de Ácido Nucleico , Teoria Quântica , Sódio/química , Espectrofotometria Ultravioleta , Telômero/química , Telômero/metabolismo , Raios Ultravioleta
16.
Inorg Chem ; 50(16): 7403-11, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21770396

RESUMO

The behavior of a bimetallic water-soluble (Zn(II)/Pt(II)) porphyrazine hexacation as ligand of G-quadruplex (G4) structures adopted by a human telomeric DNA sequence has been examined with different spectroscopic techniques. In K(+) rich solution the hexacationic Zn(II) porphyrazine ligand bearing a peripheral cis-platin-like functionality changes the G-quadruplex conformational equilibrium of the human telomeric sequence 5'-d[AGGG(TTAGGG)(3)]-3' and drives it exclusively toward a very stable parallel G4 form in the complex with 2:1 stoichiometry. An increase of the melting temperature of more than 20 °C is observed in this complex compared to the G4 alone. On the contrary ligand binding to G-quadruplex of the same telomeric sequence in Na(+) rich solution neither markedly influences the predominant basket conformation nor confers increased thermal stability to the G4 structure.


Assuntos
Antineoplásicos/química , Quadruplex G , Platina/química , Porfirinas/química , Água/química , Zinco/química , Antineoplásicos/síntese química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Porfirinas/síntese química , Piranos/síntese química , Piranos/química , Piridinas/síntese química , Piridinas/química , Solubilidade
17.
Org Biomol Chem ; 9(3): 684-8, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21107490

RESUMO

A water soluble Zn(II) porphyrazine drives the conformational equilibrium of the G-quadruplex of a human telomeric sequence exclusively towards a parallel conformation upon complexation.


Assuntos
DNA/química , Quadruplex G , Metaloporfirinas/química , Telômero/química , Cátions/química , Humanos , Modelos Moleculares
18.
Phys Chem Chem Phys ; 13(2): 540-51, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21052579

RESUMO

Combining various techniques in solution we proved that Doxorubicin, also called Adriamycin, and Sabarubicin, also known as MEN 10755, bind to the human telomeric sequence, 5'-d[GGG(TTAGGG)(3)]-3' (21-mer), assuming a G-quadruplex structure in the presence of K(+). Complexes of drugs with the 21-mer in 1 : 1 and 2 : 1 stoichiometry coexist in solution. Association constants were obtained from titration experiments and confirmed by isothermal titration calorimetry. The fluorescence of the drugs was quenched upon complexation. UV circular dichroism (CD) spectra of the complexes were characterized by the G-quadruplex signal and indicated that drug binding influences the equilibrium between quadruplex conformations. The visible CD spectra were exclusively due to the drug and show differences in the complexation modes of the two drugs. Spectroscopic and thermodynamic parameters of the 1 : 1 complexes point to drug stacking with the G-quadruplex top or bottom tetrad. Thermodynamic data suggests that the binding of the second drug molecule in the 2 : 1 complex may occur in a groove. Complexation caused a small increase in the thermal stability of the G-quadruplex main conformation, shifting T(m) from 62 to 67 °C.


Assuntos
Antineoplásicos/química , Dissacarídeos/química , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Quadruplex G , Telômero/química , Sequência de Bases , Calorimetria , Dicroísmo Circular , Humanos , Conformação de Ácido Nucleico , Transição de Fase , Potássio/química , Espectrofotometria Ultravioleta , Termodinâmica , Temperatura de Transição
19.
Free Radic Res ; 55(4): 384-404, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33494618

RESUMO

Hydroxyl radical (HO•) is the most reactive toward DNA among the reactive oxygen species (ROS) generated in aerobic organisms by cellular metabolisms. HO• is generated also by exogenous sources such as ionizing radiations. In this review we focus on the purine DNA damage by HO• radicals. In particular, emphasis is given on mechanistic aspects for the various lesion formation and their interconnections. Although the majority of the purine DNA lesions like 8-oxo-purine (8-oxo-Pu) are generated by various ROS (including HO•), the formation of 5',8-cyclopurine (cPu) lesions in vitro and in vivo relies exclusively on the HO• attack. Methodologies generally utilized for the purine lesions quantification in biological samples are reported and critically discussed. Recent results on cPu and 8-oxo-Pu lesions quantification in various types of biological specimens associated with the cellular repair efficiency as well as with distinct pathologies are presented, providing some insights on their biological significance.


Assuntos
Radical Hidroxila/metabolismo , Purinas/metabolismo , Dano ao DNA , Radical Hidroxila/química , Purinas/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
20.
Cells ; 9(7)2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664519

RESUMO

Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5',8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3-6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.


Assuntos
Síndrome de Cockayne/patologia , Dano ao DNA , Oxigênio/metabolismo , Purinas/metabolismo , Linhagem Celular , Síndrome de Cockayne/genética , DNA/isolamento & purificação , Humanos , Mutação/genética , Purinas/química , Estereoisomerismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA