RESUMO
The present study aimed to investigate whether and how non-invasive biocalorimetric measurements could serve for process monitoring of fungal pretreatment during solid-state fermentation (SSF) of lignocellulosic agricultural residues such as wheat straw. Seven filamentous fungi representing different lignocellulose decay types were employed. Water-soluble sugars being immediately available after fungal pretreatment and those becoming water-extractable after enzymatic digestion of pretreated wheat straw with hydrolysing (hemi)cellulases were considered to constitute the total bioaccessible sugar fraction. The latter was used to indicate the success of pretreatments and linked to corresponding species-specific metabolic heat yield coefficients (YQ/X) derived from metabolic heat flux measurements during fungal wheat straw colonisation. An YQ/X range of about 120 to 140 kJ/g was seemingly optimal for pretreatment upon consideration of all investigated fungi and application of a non-linear Gaussian fitting model. Upon exclusion from analysis of the brown-rot basidiomycete Gloeophyllum trabeum, which differs from all other here investigated fungi in employing extracellular Fenton chemistry for lignocellulose decomposition, a linear relationship where amounts of total bioaccessible sugars were suggested to increase with increasing YQ/X values was obtained. It remains to be elucidated whether an YQ/X range being optimal for fungal pretreatment could firmly be established, or if the sugar accessibility for post-treatment generally increases with increasing YQ/X values as long as "conventional" enzymatic, i.e. (hemi)cellulase-based, lignocellulose decomposition mechanisms are operative. In any case, metabolic heat measurement-derived parameters such as YQ/X values may become very valuable tools supporting the assessment of the suitability of different fungal species for pretreatment of lignocellulosic substrates. KEY POINTS: ⢠Biocalorimetry was used to monitor wheat straw pretreatment with seven filamentous fungi. ⢠Metabolic heat yield coefficients (YQ/X) seem to indicate pretreatment success. ⢠YQ/X values may support the selection of suitable fungal strains for pretreatment.
Assuntos
Fungos , Lignina , Triticum , Lignina/metabolismo , Triticum/microbiologia , Triticum/química , Fungos/metabolismo , Fermentação , Hidrólise , Agricultura/métodosRESUMO
In systems biology, material balances, kinetic models, and thermodynamic boundary conditions are increasingly used for metabolic network analysis. It is remarkable that the reversibility of enzyme-catalyzed reactions and the influence of cytosolic conditions are often neglected in kinetic models. In fact, enzyme-catalyzed reactions in numerous metabolic pathways such as in glycolysis are often reversible, i.e., they only proceed until an equilibrium state is reached and not until the substrate is completely consumed. Here, we propose the use of irreversible thermodynamics to describe the kinetic approximation to the equilibrium state in a consistent way with very few adjustable parameters. Using a flux-force approach allowed describing the influence of cytosolic conditions on the kinetics by only one single parameter. The approach was applied to reaction steps 2 and 9 of glycolysis (i.e., the phosphoglucose isomerase reaction from glucose 6-phosphate to fructose 6-phosphate and the enolase-catalyzed reaction from 2-phosphoglycerate to phosphoenolpyruvate and water). The temperature dependence of the kinetic parameter fulfills the Arrhenius relation and the derived activation energies are plausible. All the data obtained in this work were measured efficiently and accurately by means of isothermal titration calorimetry (ITC). The combination of calorimetric monitoring with simple flux-force relations has the potential for adequate consideration of cytosolic conditions in a simple manner.
Assuntos
Calorimetria/métodos , Glicólise/fisiologia , Redes e Vias Metabólicas/fisiologia , Catálise , Glicólise/genética , Cinética , Biologia de Sistemas/métodos , Temperatura , TermodinâmicaRESUMO
For systems biology, it is important to describe the kinetic and thermodynamic properties of enzyme-catalyzed reactions and reaction cascades quantitatively under conditions prevailing in the cytoplasm. While in part I kinetic models based on irreversible thermodynamics were tested, here in part II, the influence of the presumably most important cytosolic factors was investigated using two glycolytic reactions (i.e., the phosphoglucose isomerase reaction (PGI) with a uni-uni-mechanism and the enolase reaction with an uni-bi-mechanism) as examples. Crowding by macromolecules was simulated using polyethylene glycol (PEG) and bovine serum albumin (BSA). The reactions were monitored calorimetrically and the equilibrium concentrations were evaluated using the equation of state ePC-SAFT. The pH and the crowding agents had the greatest influence on the reaction enthalpy change. Two kinetic models based on irreversible thermodynamics (i.e., single parameter flux-force and two-parameter Noor model) were applied to investigate the influence of cytosolic conditions. The flux-force model describes the influence of cytosolic conditions on reaction kinetics best. Concentrations of magnesium ions and crowding agents had the greatest influence, while temperature and pH-value had a medium influence on the kinetic parameters. With this contribution, we show that the interplay of thermodynamic modeling and calorimetric process monitoring allows a fast and reliable quantification of the influence of cytosolic conditions on kinetic and thermodynamic parameters.
Assuntos
Algoritmos , Citosol/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Glicólise , Modelos Teóricos , Fosfopiruvato Hidratase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Biocatálise , Bovinos , Concentração de Íons de Hidrogênio , Cinética , Magnésio/metabolismo , Polietilenoglicóis/metabolismo , Soroalbumina Bovina/metabolismo , Temperatura , TermodinâmicaRESUMO
The sustainable production of fuels and industrial bulk chemicals by microorganisms in biotechnological processes is promising but still facing various challenges. In particular, toxic substrates require an efficient process control strategy. Methanol, as an example, has the potential to become a major future feedstock due to its availability from fossil and renewable resources. However, besides being toxic, methanol is highly volatile. To optimize its dosage during microbial cultivations, an innovative, predictive process control strategy based on calorespirometry, i.e., simultaneous measurements of heat and CO2 emission rates, was developed. This rarely used technique allows an online-estimation of growth parameters such as the specific growth rate and substrate consumption rate as well as a detection of shifts in microbial metabolism thus enabling an adapted feeding for different phases of growth. The calorespirometric control strategy is demonstrated exemplarily for growth of the methylotrophic bacterium Methylobacterium extorquens on methanol and compared to alternative control strategies. Applying the new approach, the methanol concentration could be maintained far below a critical limit, while increased growth rates of M. extorquens and higher final contents of the biopolymer polyhydroxybutyrate were obtained. Biotechnol. Bioeng. 2016;113: 2113-2121. © 2016 Wiley Periodicals, Inc.
Assuntos
Toxinas Bacterianas/metabolismo , Calorimetria Indireta/métodos , Hidroxibutiratos/metabolismo , Metanol/metabolismo , Methylobacterium extorquens/fisiologia , Modelos Biológicos , Reatores Biológicos/microbiologia , Proliferação de Células/fisiologia , Simulação por Computador , Retroalimentação Fisiológica/fisiologia , Hidroxibutiratos/isolamento & purificaçãoRESUMO
This article presents and compares several thermodynamic methods for the quantitative interpretation of data from calorimetric measurements. Heat generation and absorption are universal features of microbial growth and product formation as well as of cell cultures from animals, plants and insects. The heat production rate reflects metabolic changes in real time and is measurable on-line. The detection limit of commercially available calorimetric instruments can be low enough to measure the heat of 100,000 aerobically growing bacteria or of 100 myocardial cells. Heat can be monitored in reaction vessels ranging from a few nanoliters up to many cubic meters. Most important the heat flux measurement does not interfere with the biological process under investigation. The practical advantages of calorimetry include the waiver of labeling and reactants. It is further possible to assemble the thermal transducer in a protected way that reduces aging and thereby signal drifts. Calorimetry works with optically opaque solutions. All of these advantages make calorimetry an interesting method for many applications in medicine, environmental sciences, ecology, biochemistry and biotechnology, just to mention a few. However, in many cases the heat signal is merely used to monitor biological processes but only rarely to quantitatively interpret the data. Therefore, a significant proportion of the information potential of calorimetry remains unutilized. To fill this information gap and to motivate the reader using the full information potential of calorimetry, various methods for quantitative data interpretations are presented, evaluated and compared with each other. Possible errors of interpretation and limitations of quantitative data analysis are also discussed.
Assuntos
Calorimetria/métodos , Interpretação Estatística de Dados , Metabolismo Energético , TermodinâmicaRESUMO
Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16's C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L(-1) and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 µmol g(-1) h(-1), respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.
Assuntos
Dióxido de Carbono/metabolismo , Cupriavidus necator/metabolismo , Hidrogênio/metabolismo , Hidroxibutiratos/metabolismo , Transferases Intramoleculares/metabolismo , Engenharia Metabólica , Oxigênio/metabolismo , Vias Biossintéticas/genética , Cupriavidus necator/genética , Expressão Gênica , Transferases Intramoleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Catalytic activity of microbial communities maintains the services and functions of soils. Microbial communities require energy and carbon for microbial growth, which they obtain by transforming organic matter (OM), oxidizing a fraction of it and transferring the electrons to various terminal acceptors. Quantifying the relations between matter and energy fluxes is possible when key parameters such as reaction enthalpy (∆rH), energy use efficiency (related to enthalpy) (EUE), carbon use efficiency (CUE), calorespirometric ratio (CR), carbon dioxide evolution rate (CER), and the apparent specific growth rate (µapp) are known. However, the determination of these parameters suffers from unsatisfying accuracy at the technical (sample size, instrument sensitivity), experimental (sample aeration) and data processing levels thus affecting the precise quantification of relationships between carbon and energy fluxes. To address these questions under controlled conditions, we analyzed microbial turnover processes in a model soil amended using a readily metabolizable substrate (glucose) and three commercial isothermal microcalorimeters (MC-Cal/100P, TAM Air and TAM III) with different sample sizes meaning varying volume-related thermal detection limits (LODv) (0.05-1mW L-1). We conducted aeration experiments (aerated and un-aerated calorimetric ampoules) to investigate the influence of oxygen limitation and thermal perturbation on the measurement signal. We monitored the CER by measuring the additional heat caused by CO2 absorption using a NaOH solution acting as a CO2 trap. The range of errors associated with the calorimetrically derived µapp, EUE, and CR was determined and compared with the requirements for quantifying CUE and the degree of anaerobicity (ηA). Calorimetrically derived µapp and EUE were independent of the instrument used. However, instruments with a low LODv yielded the most accurate results. Opening and closing the ampoules for oxygen and CO2 exchange did not significantly affect metabolic heats. However, regular opening during calorimetrically derived CER measurements caused significant measuring errors due to strong thermal perturbation of the measurement signal. Comparisons between experimentally determined CR, CUE,ηA, and modeling indicate that the evaluation of CR should be performed with caution.
RESUMO
Increased antibiotic resistance of pathogenic bacteria dwelling in biofilm structures has motivated the development of various monitoring tools specifically designed for biofilm investigations. In this study, the potential of the recently emerging chip calorimetry for this purpose was analysed. The activity of biofilms of Pseudomonas putida PaW340 was monitored chip-calorimetrically and compared with counts of colony forming units (CFU), bioluminescence-based ATP measurements, and quantitative confocal laser scanning microscopy (CLSM). The biofilms were treated with antibiotics differing in their mechanisms of action (bactericidal kanamycin vs. bacteriostatic tetracycline) and referenced to untreated biofilms. For untreated biofilms, all methods gave comparable results. Calorimetric killing curves, however, reflecting metabolic responses to biofilm eradication non-invasively in real time, differed from those obtained with the established methods. For instance, heat signals increased right after addition of the antibiotics. This transient increase of activity was not detected by the other methods, since only calorimetry delivers specific information about the catabolic part of the metabolism. In case of the bactericidal antibiotic, CFU misleadingly indicated successful biofilm eradication, whereas calorimetry revealed enduring activity. Our results show that calorimetry holds promise to provide valuable mechanistic information, thereby complementing other methods of biofilm analysis.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Calorimetria/métodos , Pseudomonas putida/efeitos dos fármacos , Contagem de Colônia Microbiana , Medições Luminescentes , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Confocal , Pseudomonas putida/fisiologiaRESUMO
Non-invasive methods for online monitoring of biotechnological processes without compromising the integrity of the reactor system are very important to generate continuous data. Even though calorimetry has been used in conventional biochemical analysis for decades, it has not yet been specifically applied for online detection of product formation at technical scale. Thus, this article demonstrates a calorespirometric method for online detection of microbial lysine formation in stirred tank bioreactors. The respective heat generation of two bacterial strains, Corynebacterium glutamicum ATCC 13032 (wild-type) and C. glutamicum DM1730 (lysine producer), was compared with the O2 -consumption in order to determine whether lysine was formed. As validation of the proposed calorespirometric method, the online results agreed well with the offline measured data. This study has proven that calorespirometry is a viable non-invasive technique to detect product formation at any time point.
Assuntos
Reatores Biológicos/microbiologia , Biotecnologia/instrumentação , Biotecnologia/métodos , Calorimetria/métodos , Corynebacterium glutamicum/química , Lisina/análise , Biomassa , Corynebacterium glutamicum/metabolismo , Fermentação , Lisina/metabolismo , Reprodutibilidade dos TestesRESUMO
In the present study, we investigated whether a non-invasive metabolic heat flux analysis could serve the determination of the functional traits in free-living saprotrophic decomposer fungi and aid the prediction of fungal influences on ecosystem processes. For this, seven fungi, including ascomycete, basidiomycete, and zygomycete species, were investigated in a standardised laboratory environment, employing wheat straw as a globally relevant lignocellulosic substrate. Our study demonstrates that biocalorimetry can be employed successfully to determine growth-related fungal activity parameters, such as apparent maximum growth rates (AMGR), cultivation times until the observable onset of fungal growth at AMGR (tAMGR), quotients formed from the AMGR and tAMGR (herein referred to as competitive growth potential, CGP), and heat yield coefficients (YQ/X), the latter indicating the degree of resource investment into fungal biomass versus other functional attributes. These parameters seem suitable to link fungal potentials for biomass production to corresponding ecological strategies employed during resource utilisation, and therefore may be considered as fungal life history traits. A close connection exists between the CGP and YQ/X values, which suggests an interpretation that relates to fungal life history strategies.
RESUMO
The applicability of biocalorimetry for monitoring fungal conversion of lignocellulosic agricultural by-products during solid-state fermentation (SSF) was substantiated through linking the non-invasive measurement of metabolic heat fluxes to conventional invasive determination of fungal activity (growth, substrate degradation, enzyme activity) parameters. For this, the fast-growing, cellulose-utilising ascomycete Stachybotrys chlorohalonata and the comparatively slow-growing litter-decay basidiomycete Stropharia rugosoannulata were investigated as model organisms during growth on solid wheat straw. Both biocalorimetric and non-calorimetric data may suggest R (ruderal)- and C (combative)-selected life history strategies in S. chlorohalonata and S. rugosoannulata, respectively. For both species, a strong linear correlation of the released metabolic heat with the corresponding fungal biomass was observed. Species-specific YQ/X values (metabolic heat released per fungal biomass unit) were obtained, which potentially enable use of biocalorimetric signals for the quantification of fungal biomass during single-species SSF processes. Moreover, YQ/X values may also indicate different fungal life history strategies and therefore be considered as useful parameters aiding fungal ecology research.
Assuntos
Ascomicetos , Calorimetria/métodos , Fermentação , Lignina , Ascomicetos/metabolismo , Biomassa , Microbiologia Industrial , Lignina/metabolismoRESUMO
Cu-modified nanoparticles have been designed to mimic peroxidase, and their potent antibacterial and anti-biofilm abilities have been widely investigated. In this study, novel core-shell polydopamine (PDA)/Cu4(OH)6SO4 crystal (PDA/Cu) nanometer rods were prepared. The PDA/Cu nanometer rods show similar kinetic behaviors to chloride-activated peroxidases, exhibit excellent photothermal properties, and are sensitive to the concentrations of pH values and the substrate (i.e., H2O2). PDA/Cu nanometer rods could adhere to the bacteria and catalyze hydrogen peroxide (H2O2) to generate more reactive hydroxy radicals (â¢OH) against Staphylococcus aureus and Escherichia coli, Furthermore, PDA/Cu nanometer rods show enhanced catalytic and photothermal synergistic antibacterial activity. This work provides a simple, inexpensive, and effective strategy for antibacterial applications.
RESUMO
In theory, heat production rates are very well suited for analysing and controlling bioprocesses on different scales from a few nanolitres up to many cubic metres. Any bioconversion is accompanied by a production (exothermic) or consumption (endothermic) of heat. The heat is tightly connected with the stoichiometry of the bioprocess via the law of Hess, and its rate is connected to the kinetics of the process. Heat signals provide real-time information of bioprocesses. The combination of heat measurements with respirometry is theoretically suited for the quantification of the coupling between catabolic and anabolic reactions. Heat measurements have also practical advantages. Unlike most other biochemical sensors, thermal transducers can be mounted in a protected way that prevents fouling, thereby minimizing response drifts. Finally, calorimetry works in optically opaque solutions and does not require labelling or reactants. It is surprising to see that despite all these advantages, calorimetry has rarely been applied to monitor and control bioprocesses with intact cells in the laboratory, industrial bioreactors or ecosystems. This review article analyses the reasons for this omission, discusses the additional information calorimetry can provide in comparison with respirometry and presents miniaturization as a potential way to overcome some inherent weaknesses of conventional calorimetry. It will be discussed for which sample types and scientific question miniaturized calorimeter can be advantageously applied. A few examples from different fields of microbiological and biotechnological research will illustrate the potentials and limitations of chip calorimetry. Finally, the future of chip calorimetry is addressed in an outlook.
Assuntos
Calorimetria/métodos , Monitoramento Ambiental/métodos , Biotecnologia/métodos , Biotransformação , Temperatura AltaRESUMO
Thermodynamic feasibility analyses help evaluating the feasibility of metabolic pathways. This is an important information used to develop new biotechnological processes and to understand metabolic processes in cells. However, literature standard data are uncertain for most biochemical reactions yielding wrong statements concerning their feasibility. In this article we present activity-based equilibrium constants for all the ten glycolytic reactions, accompanied by the standard reaction data (standard Gibbs energy of reaction and standard enthalpy of reaction). We further developed a thermodynamic activity-based approach that allows to correctly determine the feasibility of glycolysis under different chosen conditions. The results show for the first time that the feasibility of glycolysis can be explained by thermodynamics only if (1) correct standard data are used and if (2) the conditions in the cell at non-equilibrium states are accounted for in the analyses. The results here will help to determine the feasibility of other metabolisms and to understand metabolic processes in cells in the future.
RESUMO
Plastics are globally used for a variety of benefits. As a consequence of poor recycling or reuse, improperly disposed plastic waste accumulates in terrestrial and aquatic ecosystems to a considerable extent. Large plastic waste items become fragmented to small particles through mechanical and (photo)chemical processes. Particles with sizes ranging from millimeter (microplastics, <5 mm) to nanometer (nanoplastics, NP, <100 nm) are apparently persistent and have adverse effects on ecosystems and human health. Current research therefore focuses on whether and to what extent microorganisms or enzymes can degrade these NP. In this study, we addressed the question of what information isothermal titration calorimetry, which tracks the heat of reaction of the chain scission of a polyester, can provide about the kinetics and completeness of the degradation process. The majority of the heat represents the cleavage energy of the ester bonds in polymer backbones providing real-time kinetic information. Calorimetry operates even in complex matrices. Using the example of the cutinase-catalyzed degradation of polyethylene terephthalate (PET) nanoparticles, we found that calorimetry (isothermal titration calorimetry-ITC) in combination with thermokinetic models is excellently suited for an in-depth analysis of the degradation processes of NP. For instance, we can separately quantify i) the enthalpy of surface adsorption ∆AdsH = 129 ± 2 kJ mol-1, ii) the enthalpy of the cleavage of the ester bonds ∆EBH = -58 ± 1.9 kJ mol-1 and the apparent equilibrium constant of the enzyme substrate complex K = 0.046 ± 0.015 g L-1. It could be determined that the heat production of PET NP degradation depends to 95% on the reaction heat and only to 5% on the adsorption heat. The fact that the percentage of cleaved ester bonds (η = 12.9 ± 2.4%) is quantifiable with the new method is of particular practical importance. The new method promises a quantification of enzymatic and microbial adsorption to NP and their degradation in mimicked real-world aquatic conditions.
Assuntos
Microplásticos , Polietilenotereftalatos , Calorimetria , Ecossistema , Humanos , PlásticosRESUMO
In this study, a methylotrophic bacterium, Methylobacterium rhodesianum MB 126, was used for the production of the chiral compound (R)-3-hydroxybutyrate (R-3HB) from methanol. R-3HB is formed during intracellular degradation of the storage polymer (R)-3-polyhydroxybutyrate (PHB). Since the monomer R-3HB does not accumulate under natural conditions, M. rhodesianum was genetically modified. The gene (hbd) encoding the R-3HB-degrading enzyme, R-3HB dehydrogenase, was inactivated in M. rhodesianum. The resulting hbd mutant still exhibited low growth rates on R-3HB as the sole source of carbon and energy, indicating the presence of alternative pathways for R-3HB utilization. Therefore, transposon mutagenesis was carried out with the hbd mutant, and a double mutant unable to grow on R-3HB was obtained. This mutant was shown to be defective in lipoic acid synthase (LipA), resulting in an incomplete citric acid cycle. Using the hbd lipA mutant, we produced 3.2 to 3.5 mM R-3HB in batch and 27 mM (2,800 mg liter(-1)) in fed-batch cultures. This was achieved by sequences of cultivation conditions initially favoring growth, then PHB accumulation, and finally PHB degradation.
Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Redes e Vias Metabólicas/genética , Methylobacterium/genética , Methylobacterium/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Elementos de DNA Transponíveis , Metabolismo Energético , Deleção de Genes , Hidroxibutirato Desidrogenase/genética , Microbiologia Industrial , Metanol/metabolismo , Methylobacterium/crescimento & desenvolvimento , Mutagênese Insercional , Sulfurtransferases/genéticaRESUMO
BACKGROUND: Thermodynamic methods are finding more and more applications in systems biology, which attempts to understand cell functions mechanistically. Unfortunately, the state variables used (reaction enthalpy and Gibbs energy) do not take sufficient account of the conditions inside of cells, especially the crowding with macromolecules. METHODS: For this reason, the influence of crowding agents and various other parameters such as salt concentrations, pH and temperature on equilibrium position and reaction enthalpy of the glycolytic example reaction 9 (2-Phospoglycerate - > Phosphoenolpyruvate + H2O) was investigated. The conditions were chosen to be as close as possible to the cytosolic conditions. Poly(ethylene glycol) MW = 20,000 g mol-1 (PEG 20,000) was used to analyze the influence of crowding with macromolecules. The equation of state electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied to consider the influence of crowding agents on the reaction equilibria. RESULTS AND CONCLUSIONS: For the reaction enthalpies and for the equilibria, it was found that the influence of salts and temperature is not pronounced while that of pH and PEG 20,000 concentration is considerable. Furthermore, it could be shown that under identical measurement conditions there are no differences between the van 't Hoff and the calorimetrically determined reaction enthalpy. GENERAL SIGNIFICANCE: The results show how important it is to consider the special cytosolic conditions when applying thermodynamic data in systems biology.
Assuntos
Citosol/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Calorimetria , Glicólise , TermodinâmicaRESUMO
The detection and quantification of Legionella pneumophila (responsible for legionnaire's disease) in water samples can be achieved by various methods. However, the culture-based ISO 11731:2017, which is based on counts of colony-forming units per ml (CFU·ml-1 ) is still the gold standard for quantification of Legionella species (spp.). As a powerful alternative, we propose real-time monitoring of the growth of L. pneumophila using an isothermal microcalorimeter (IMC). Our results demonstrate that, depending on the initial concentration of L. pneumophila, detection times of 24-48 h can be reliably achieved. IMC may, therefore, be used as an early warning system for L. pneumophila contamination. By replacing only visual detection of growth by a thermal sensor, but otherwise maintaining the standardized protocol of the ISO 11731:2017, the new procedure could easily be incorporated into existing standards. The exact determination of the beginning of metabolic heat is often very difficult because at the beginning of the calorimetric signal the thermal stabilization and the metabolic heat development overlap. Here, we propose a new data evaluation based on the first derivation of the heat flow signal. The improved evaluation method can further reduce detection times and significantly increase the reliability of the IMC approach.
Assuntos
Legionella pneumophila , Legionella , Reprodutibilidade dos Testes , Microbiologia da ÁguaRESUMO
The glycolytic pathway is one of the most important pathways for living organisms, due to its role in energy production and as supplier of precursors for biosynthesis in living cells. This work focuses on determination of the standard Gibbs energy of reaction ΔRg'0 of the enolase reaction, the ninth reaction in the glycolysis pathway. Exact ΔRg'0 values are required to predict the thermodynamic feasibility of single metabolic reactions or even of metabolic reaction sequences under cytosolic conditions. So-called "apparent" standard data from literature are only valid at specific conditions. Nevertheless, such data are often used in pathway analyses, which might lead to misinterpretation of the results. In this work, equilibrium measurements were combined with activity coefficients in order to obtain new standard values ΔRg'0 for the enolase reaction that are independent of the cytosolic conditions. Reaction equilibria were measured at different initial substrate concentrations and temperatures of 298.15 K, 305.15 K and 310.15 K at pH 7. The activity coefficients were predicted using the equation of state electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The ePC-SAFT parameters were taken from literature or fitted to new experimentally determined osmotic coefficients and densities. At 298.15 K and pH 7, a ΔRg'0(298.15 K, pH 7) value of -2.8 ± 0.2 kJ mol-1 was obtained. This value differs by up to 5 kJ mol-1 from literature data. Reasons are the poorly defined "standard" conditions and partly undefined reaction conditions of literature works. Finally, using temperature-dependent equilibrium constants and the van 't Hoff equation, the standard enthalpy of reaction of ΔRh'0(298.15 K, pH 7) = 27 ± 10 kJ mol-1 was determined, and a similar value was found by quantum-chemistry calculations.