Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Cancer ; 17(1): 235, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359266

RESUMO

BACKGROUND: Expression and activity of heparanase, an endoglycosidase that cleaves heparan sulfate (HS) side chains of proteoglycans, is associated with progression and poor prognosis of many cancers which makes it an attractive drug target in cancer therapeutics. METHODS: In the present work, we report the in vitro screening of a library of 150 small molecules with the scaffold bearing quinolones, oxazines, benzoxazines, isoxazoli(di)nes, pyrimidinones, quinolines, benzoxazines, and 4-thiazolidinones, thiadiazolo[3,2-a]pyrimidin-5-one, 1,2,4-triazolo-1,3,4-thiadiazoles, and azaspiranes against the enzymatic activity of human heparanase. The identified lead compounds were evaluated for their heparanase-inhibiting activity using sulfate [35S] labeled extracellular matrix (ECM) deposited by cultured endothelial cells. Further, anti-invasive efficacy of lead compound was evaluated against hepatocellular carcinoma (HepG2) and Lewis lung carcinoma (LLC) cells. RESULTS: Among the 150 compounds screened, we identified 1,2,4-triazolo-1,3,4-thiadiazoles bearing compounds to possess human heparanase inhibitory activity. Further analysis revealed 2,4-Diiodo-6-(3-phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)phenol (DTP) as the most potent inhibitor of heparanase enzymatic activity among the tested compounds. The inhibitory efficacy was demonstrated by a colorimetric assay and further validated by measuring the release of radioactive heparan sulfate degradation fragments from [35S] labeled extracellular matrix. Additionally, lead compound significantly suppressed migration and invasion of LLC and HepG2 cells with IC50 value of ~5 µM. Furthermore, molecular docking analysis revealed a favourable interaction of triazolo-thiadiazole backbone with Asn-224 and Asp-62 of the enzyme. CONCLUSIONS: Overall, we identified biologically active heparanase inhibitor which could serve as a lead structure in developing compounds that target heparanase in cancer.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Neoplasias/enzimologia , Neoplasias/patologia , Tiadiazóis/química , Triazóis/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Humanos , Neoplasias/tratamento farmacológico , Células Tumorais Cultivadas
2.
Bioorg Med Chem Lett ; 25(15): 2931-6, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048794

RESUMO

In the present study, we used solution combustion synthesis-bismuth oxide (Bi2O3) as catalyst for the simple and efficient synthesis of 1,2-oxazine based derivatives of 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazoles, 1-arylpiperazine and carbazoles. (4aR,8aR)-4-(4-Methoxyphenyl)-3-((4-(4-methoxyphenyl)piperazin-1-yl)methyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazine was found to be the most potent compound with a high degree of selectivity in inhibition towards COX2 (1.7 µM) over COX1 (40.4 µM) demonstrating the significance of 1,2-oxazine derivatives in developing COX2 specific inhibitors. Molecular docking analyses demonstrated that an isoleucine residue in the active site of COX1 is responsible for lower affinity to COX1 and increased potency towards COX2. Overall, our study reveals that the new 1,2-oxazine-based small molecules qualify as lead structures in developing COX2-specific inhibitors for anti-inflammatory therapy.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/imunologia , Oxazinas/química , Oxazinas/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/imunologia , Simulação de Acoplamento Molecular , Oxazinas/síntese química
3.
Bioorg Med Chem Lett ; 25(4): 893-7, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25592709

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor worldwide, and is the third most common cause of cancer related death. Constitutive activation of NF-κB is the underlying mechanism behind tumorigenesis and this protein regulates the expression of genes involved in proliferation, survival, drug resistance, angiogenesis and metastasis. The design of inhibitors which suppress NF-κB activation is therefore of great therapeutic importance in the treatment of HCC. In this study, we investigated the effect of newly synthesized coumarin derivatives against HCC cells, and identified (7-Carbethoxyamino-2-oxo-2H-chromen-4-yl)methylpyrrolidine-1 carbodithioate (CPP) as lead compound. Further, we evaluated the effect of CPP on the DNA binding ability of NF-κB, CXCL12-induced cell migration and invasion, and the regulated gene products in HCC cells. We found that CPP induced cytotoxicity in three HCC cells in a time and dose dependent manner, and suppressed the DNA binding ability of NF-κB. CPP significantly decreased the CXCL12-induced cell migration and invasion. More evidently, CPP inhibits the expression of NF-κB targeted genes such as cyclin D1, Bcl-2, survivin, MMP12 and C-Myc. Furthermore, the molecular docking analysis suggested that CPP interacts with the p50 binding domain of the p65 subunit, scoring best among the 26 docked coumarin derivatives of this study. Thus, we are reporting CPP as a potent inhibitor of the pro-inflammatory pathway in Hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cumarínicos/farmacologia , Neoplasias Hepáticas/metabolismo , NF-kappa B/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Cumarínicos/química , Humanos , Neoplasias Hepáticas/patologia , Modelos Moleculares , NF-kappa B/metabolismo
4.
Brain Commun ; 6(1): fcad353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38226317

RESUMO

Fragile X syndrome is a neurodevelopmental disorder caused by silencing of the fragile X messenger ribonucleotide gene. Patients display a wide spectrum of symptoms ranging from intellectual and learning disabilities to behavioural challenges including autism spectrum disorder. In addition to this, patients also display a diversity of symptoms due to mosaicism. These factors make fragile X syndrome a difficult syndrome to manage and suggest that a single targeted therapeutic approach cannot address all the symptoms. To this end, we utilized Healx's data-driven drug discovery platform to identify a treatment strategy to address the wide range of diverse symptoms among patients. Computational methods identified the combination of ibudilast and gaboxadol as a treatment for several pathophysiological targets that could potentially reverse multiple symptoms associated with fragile X syndrome. Ibudilast is an approved broad-spectrum phosphodiesterase inhibitor, selective against both phosphodiesterase 4 and phosphodiesterase 10, and has demonstrated to have several beneficial effects in the brain. Gaboxadol is a GABAA receptor agonist, selective against the delta subunit, which has previously displayed encouraging results in a fragile X syndrome clinical trial. Alterations in GABA and cyclic adenosine monophosphate metabolism have long since been associated with the pathophysiology of fragile X syndrome; however, targeting both pathways simultaneously has never been investigated. Both drugs have a good safety and tolerability profile in the clinic making them attractive candidates for repurposing. We set out to explore whether the combination of ibudilast and gaboxadol could demonstrate therapeutic efficacy in a fragile X syndrome mouse model. We found that daily treatment with ibudilast significantly enhanced the ability of fragile X syndrome mice to perform a number of different cognitive assays while gaboxadol treatment improved behaviours such as hyperactivity, aggression, stereotypy and anxiety. Importantly, when ibudilast and gaboxadol were co-administered, the cognitive deficits as well as the aforementioned behaviours were rescued. Moreover, this combination treatment showed no evidence of tolerance, and no adverse effects were reported following chronic dosing. This work demonstrates for the first time that by targeting multiple pathways, with a combination treatment, we were able to rescue more phenotypes in a fragile X syndrome mouse model than either ibudilast or gaboxadol could achieve as monotherapies. This combination treatment approach holds promise for addressing the wide spectrum of diverse symptoms in this heterogeneous patient population and may have therapeutic potential for idiopathic autism.

5.
Neuropharmacology ; 147: 74-86, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29792283

RESUMO

Many available drugs have been repurposed as treatments for neurodevelopmental disorders. In the specific case of fragile X syndrome, many clinical trials of available drugs have been conducted with the goal of disease modification. In some cases, detailed understanding of basic disease mechanisms has guided the choice of drugs for clinical trials, and several notable successes in fragile X clinical trials have led to common use of drugs such as minocycline in routine medical practice. Newer technologies like Disease-Gene Expression Matching (DGEM) may allow for more rapid identification of promising repurposing candidates. A DGEM study predicted that sulindac could be therapeutic for fragile X, and subsequent preclinical validation studies have shown promising results. The use of combinations of available drugs and nutraceuticals has the potential to greatly expand the options for repurposing, and may even be a viable business strategy. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.


Assuntos
Reposicionamento de Medicamentos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Animais , Dissulfiram/farmacologia , Humanos , Metoprolol/farmacologia , Minociclina/farmacologia , Atividade Motora/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sulindaco/farmacologia
6.
Front Pharmacol ; 9: 1096, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333748

RESUMO

The parasite Plasmodium falciparum is the most lethal species of Plasmodium to cause serious malaria infection in humans, and with resistance developing rapidly novel treatment modalities are currently being sought, one of which being combinations of existing compounds. The discovery of combinations of antimalarial drugs that act synergistically with one another is hence of great importance; however an exhaustive experimental screen of large drug space in a pairwise manner is not an option. In this study we apply our machine learning approach, Combination Synergy Estimation (CoSynE), which can predict novel synergistic drug interactions using only prior experimental combination screening data and knowledge of compound molecular structures, to a dataset of 1,540 antimalarial drug combinations in which 22.2% were synergistic. Cross validation of our model showed that synergistic CoSynE predictions are enriched 2.74 × compared to random selection when both compounds in a predicted combination are known from other combinations among the training data, 2.36 × when only one compound is known from the training data, and 1.5 × for entirely novel combinations. We prospectively validated our model by making predictions for 185 combinations of 23 entirely novel compounds. CoSynE predicted 20 combinations to be synergistic, which was experimentally validated for nine of them (45%), corresponding to an enrichment of 1.70 × compared to random selection from this prospective data set. Such enrichment corresponds to a 41% reduction in experimental effort. Interestingly, we found that pairwise screening of the compounds CoSynE individually predicted to be synergistic would result in an enrichment of 1.36 × compared to random selection, indicating that synergy among compound combinations is not a random event. The nine novel and correctly predicted synergistic compound combinations mainly (where sufficient bioactivity information is available) consist of efflux or transporter inhibitors (such as hydroxyzine), combined with compounds exhibiting antimalarial activity alone (such as sorafenib, apicidin, or dihydroergotamine). However, not all compound synergies could be rationalized easily in this way. Overall, this study highlights the potential for predictive modeling to expedite the discovery of novel drug combinations in fight against antimalarial resistance, while the underlying approach is also generally applicable.

7.
J Med Chem ; 60(9): 3902-3912, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28383902

RESUMO

Combination antibiotic therapies are clinically important in the fight against bacterial infections. However, the search space of drug combinations is large, making the identification of effective combinations a challenging task. Here, we present a computational framework that uses substructure profiles derived from the molecular structures of drugs and predicts antibiotic interactions. Using a previously published data set of 153 drug pairs, we showed that substructure profiles are useful in predicting synergy. We experimentally measured the interaction of 123 new drug pairs, as a prospective validation set for our approach, and identified 37 new synergistic pairs. Of the 12 pairs predicted to be synergistic, 10 were experimentally validated, corresponding to a 2.8-fold enrichment. Having thus validated our methodology, we produced a compendium of interaction predictions for all pairwise combinations among 100 antibiotics. Our methodology can make reliable antibiotic interaction predictions for any antibiotic pair within the applicability domain of the model since it solely requires chemical structures as an input.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/química , Interações Medicamentosas , Estrutura Molecular
8.
Drug Discov Today ; 21(2): 225-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26360051

RESUMO

The development of treatments involving combinations of drugs is a promising approach towards combating complex or multifactorial disorders. However, the large number of compound combinations that can be generated, even from small compound collections, means that exhaustive experimental testing is infeasible. The ability to predict the behaviour of compound combinations in biological systems, whittling down the number of combinations to be tested, is therefore crucial. Here, we review the current state-of-the-art in the field of compound combination modelling, with the aim to support the development of approaches that, as we hope, will finally lead to an integration of chemical with systems-level biological information for predicting the effect of chemical mixtures.


Assuntos
Interações Medicamentosas , Quimioterapia Combinada , Modelos Biológicos , Animais , Combinação de Medicamentos , Expressão Gênica , Humanos , RNA/genética
9.
PLoS One ; 9(9): e107118, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268519

RESUMO

The anti-apoptotic protein Bcl-2 is a well-known and attractive therapeutic target for cancer. In the present study the solution-phase T3P-DMSO mediated efficient synthesis of 2-amino-chromene-3-carbonitriles from alcohols, malanonitrile and phenols is reported. These novel 2-amino-chromene-3-carbonitriles showed cytotoxicity in human acute myeloid leukemia (AML) cell lines. Compound 4 g was found to be the most bioactive, decreasing growth and increasing apoptosis of AML cells. Moreover, compound 4 g (at a concentration of 5 µM) increased the G2/M and sub-G1 (apoptosis) phases of AML cells. The AML cells treated with compound 4 g exhibited decreased levels of Bcl-2 and increased levels of caspase-9. In silico molecular interaction analysis showed that compound 4 g shared a similar global binding motif with navitoclax (another small molecule that binds Bcl-2), however compound 4 g occupies a smaller volume within the P2 hot spot of Bcl-2. The intermolecular π-stacking interaction, direct electrostatic interactions, and docking energy predicted for 4 g in complex with Bcl-2 suggest a strong affinity of the complex, rendering 4 g as a promising Bcl-2 inhibitor for evaluation as a new anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Antineoplásicos/síntese química , Benzopiranos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Leucemia Mieloide Aguda/tratamento farmacológico , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Nitrilas/síntese química , Proteínas Proto-Oncogênicas c-bcl-2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA