Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(22): 6301-6, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27194725

RESUMO

Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dioxigenases/metabolismo , Lactonas/metabolismo , Oxirredutases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Dioxigenases/genética , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxirredutases/genética , Fenótipo , Filogenia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 111(16): 6092-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711430

RESUMO

For almost a century the plant hormone auxin has been central to theories on apical dominance, whereby the growing shoot tip suppresses the growth of the axillary buds below. According to the classic model, the auxin indole-3-acetic acid is produced in the shoot tip and transported down the stem, where it inhibits bud growth. We report here that the initiation of bud growth after shoot tip loss cannot be dependent on apical auxin supply because we observe bud release up to 24 h before changes in auxin content in the adjacent stem. After the loss of the shoot tip, sugars are rapidly redistributed over large distances and accumulate in axillary buds within a timeframe that correlates with bud release. Moreover, artificially increasing sucrose levels in plants represses the expression of BRANCHED1 (BRC1), the key transcriptional regulator responsible for maintaining bud dormancy, and results in rapid bud release. An enhancement in sugar supply is both necessary and sufficient for suppressed buds to be released from apical dominance. Our data support a theory of apical dominance whereby the shoot tip's strong demand for sugars inhibits axillary bud outgrowth by limiting the amount of sugar translocated to those buds.


Assuntos
Carboidratos/farmacologia , Ácidos Indolacéticos/farmacologia , Pisum sativum/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Carbono/metabolismo , Flores/efeitos dos fármacos , Flores/fisiologia , Flores/efeitos da radiação , Luz , Modelos Biológicos , Pisum sativum/efeitos dos fármacos , Pisum sativum/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Sacarose/farmacologia
3.
Plant Physiol ; 168(4): 1820-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26111543

RESUMO

The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/farmacologia , Pisum sativum/metabolismo , Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Meristema/genética , Meristema/metabolismo , Mutação , Pisum sativum/genética , Ftalimidas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Fatores de Tempo , Trítio/metabolismo
4.
Plant Physiol ; 162(1): 212-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23482873

RESUMO

Cytokinins play critical roles in plant growth and development, with the transcriptional response to cytokinin being mediated by the type-B response regulators. In Arabidopsis (Arabidopsis thaliana), type-B response regulators (ARABIDOPSIS RESPONSE REGULATORS [ARRs]) form three subfamilies based on phylogenic analysis, with subfamily 1 having seven members and subfamilies 2 and 3 each having two members. Cytokinin responses are predominantly mediated by subfamily 1 members, with cytokinin-mediated effects on root growth and root meristem size correlating with type-B ARR expression levels. To determine which type-B ARRs can functionally substitute for the subfamily 1 members ARR1 or ARR12, we expressed different type-B ARRs from the ARR1 promoter and assayed their ability to rescue arr1 arr12 double mutant phenotypes. ARR1, as well as a subset of other subfamily 1 type-B ARRs, restore the cytokinin sensitivity to arr1 arr12. Expression of ARR10 from the ARR1 promoter results in cytokinin hypersensitivity and enhances shoot regeneration from callus tissue, correlating with enhanced stability of the ARR10 protein compared with the ARR1 protein. Examination of transfer DNA insertion mutants in subfamilies 2 and 3 revealed little effect on several well-characterized cytokinin responses. However, a member of subfamily 2, ARR21, restores cytokinin sensitivity to arr1 arr12 roots when expressed from the ARR1 promoter, indicating functional conservation of this divergent family member. Our results indicate that the type-B ARRs have diverged in function, such that some, but not all, can complement the arr1 arr12 mutant. In addition, our results indicate that type-B ARR expression profiles in the plant, along with posttranscriptional regulation, play significant roles in modulating their contribution to cytokinin signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Família Multigênica , Mutagênese Insercional , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Sequências Reguladoras de Ácido Nucleico , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes
5.
Front Plant Sci ; 14: 1257894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905170

RESUMO

The availability of efficient diagnostic methods is crucial to monitor the incidence of crop diseases and implement effective management strategies. One of the most important elements in diagnostics, especially in large acreage crops, is the sampling strategy as hundreds of thousands of individual plants can grow in a single farm, making it difficult to assess disease incidence in field surveys. This problem is compounded when there are no external disease symptoms, as in the case for the ratoon stunting disease (RSD) in sugarcane. We have developed an alternative approach of disease surveillance by using the crude cane juice expressed at the sugar factory (mill). For this purpose, we optimized DNA extraction and amplification conditions for the bacterium Leifsonia xyli subsp xyli, the causal agent of RSD. The use of nucleic acid dipsticks and LAMP isothermal amplification allows to perform the assays at the mills, even in the absence of molecular biology laboratories. Our method has been validated using the qPCR industry standard and shows higher sensitivity. This approach circumvents sampling limitations, providing RSD incidence evaluation on commercial crops and facilitating disease mapping across growing regions. There is also potential is to extend the technology to other sugarcane diseases as well as other processed crops.

6.
Plant J ; 64(5): 753-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21105923

RESUMO

Soil salinity affects a large proportion of the land worldwide, forcing plants to evolve a number of mechanisms to cope with salt stress. Cytokinin plays a role in the plant response to salt stress, but little is known about the mechanism by which cytokinin controls this process. We used a molecular genetics approach to examine the influence of cytokinin on sodium accumulation and salt sensitivity in Arabidopsis thaliana. Cytokinin application was found to increase sodium accumulation in the shoots of Arabidopsis, but had no significant affect on the sodium content in the roots. Consistent with this, altered sodium accumulation phenotypes were observed in mutants of each gene class of the cytokinin signal transduction pathway, including receptors, phospho-transfer proteins, and type-A and type-B response regulators. Expression of the gene encoding Arabidopsis high-affinity K(+) transporter 1;1 (AtHKT1;1), a gene responsible for removing sodium ions from the root xylem, was repressed by cytokinin treatment, but showed significantly elevated expression in the cytokinin response double mutant arr1-3 arr12-1. Our data suggest that cytokinin, acting through the transcription factors ARR1 and ARR12, regulates sodium accumulation in the shoots by controlling the expression of AtHKT1;1 in the roots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Citocininas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Brotos de Planta/metabolismo , Sódio/farmacocinética , Simportadores/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mutação , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Cloreto de Sódio/farmacologia , Simportadores/genética , Fatores de Transcrição/genética
7.
Nat Protoc ; 15(11): 3663-3677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33005038

RESUMO

The complexity of current nucleic acid isolation methods limits their use outside of the modern laboratory environment. Here, we describe a fast and affordable method to purify nucleic acids from animal, plant, viral and microbial samples using a cellulose-based dipstick. Nucleic acids can be purified by dipping in-house-made dipsticks into just three solutions: the extract (to bind the nucleic acids), a wash buffer (to remove impurities) and the amplification reaction (to elute the nucleic acids). The speed and simplicity of this method make it ideally suited for molecular applications, both within and outside the laboratory, including limited-resource settings such as remote field sites and teaching institutions. Detailed instructions for how to easily manufacture large numbers of dipsticks in house are provided. Using the instructions, readers can create more than 200 dipsticks in <30 min and perform dipstick-based nucleic acid purifications in 30 s.


Assuntos
Celulose/química , Ácidos Nucleicos/isolamento & purificação , Animais , Bactérias/química , Humanos , Técnicas de Amplificação de Ácido Nucleico/economia , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos/genética , Plantas/química , Fatores de Tempo , Vírus/química
8.
Plant Cell ; 20(8): 2102-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18723577

RESUMO

The type B Arabidopsis Response Regulators (ARRs) of Arabidopsis thaliana are transcription factors that act as positive regulators in the two-component cytokinin signaling pathway. We employed a mutant-based approach to perform a detailed characterization of the roles of ARR1, ARR10, and ARR12 in plant growth and development. The most pronounced phenotype was found in the arr1-3 arr10-5 arr12-1 triple loss-of-function mutant, which showed almost complete insensitivity to high levels of exogenously applied cytokinins. The triple mutant exhibited reduced stature due to decreased cell division in the shoot, enhanced seed size, increased sensitivity to light, altered chlorophyll and anthocyanin concentrations, and an aborted primary root with protoxylem but no metaxylem. Microarray analysis revealed that expression of the majority of cytokinin-regulated genes requires the function of ARR1, ARR10, and ARR12. Characterization of double mutants revealed differing contributions of the type B ARRs to mutant phenotypes. Our results support a model in which cytokinin regulates a wide array of downstream responses through the action of a multistep phosphorelay that culminates in transcriptional regulation by ARR1, ARR10, and ARR12.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Citocininas/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Modelos Genéticos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
9.
Proc Natl Acad Sci U S A ; 103(29): 11081-5, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16832061

RESUMO

The plant hormone cytokinin regulates numerous growth and developmental processes. A signal transduction pathway for cytokinin has been elucidated that is similar to bacterial two-component phosphorelays. In Arabidopsis, this pathway is comprised of receptors that are similar to sensor histidine kinases, histidine-containing phosphotransfer proteins, and response regulators (ARRs). There are two classes of response regulators, the type-A ARRs, which act as negative regulators of cytokinin responses, and the type-B ARRs, which are transcription factors that play a positive role in mediating cytokinin-regulated gene expression. Here we show that several closely related members of the Arabidopsis AP2 gene family of unknown function are transcriptionally up-regulated by cytokinin through this pathway, and we have designated these AP2 genes CYTOKININ RESPONSE FACTORS (CRFs). In addition to their transcriptional regulation by cytokinin, the CRF proteins rapidly accumulate in the nucleus in response to cytokinin, and this relocalization depends on the histidine kinases and the downstream histidine-containing phosphotransfer proteins, but is independent of the ARRs. Analysis of loss-of-function mutations reveals that the CRFs function redundantly to regulate the development of embryos, cotyledons, and leaves. Furthermore, the CRFs mediate a large fraction of the transcriptional response to cytokinin, affecting a set of cytokinin-responsive genes that largely overlaps with type-B ARR targets. These results indicate that the CRF proteins function in tandem with the type-B ARRs to mediate the initial cytokinin response. Thus, the evolutionarily ancient two-component system that is used by cytokinin branches to incorporate a unique family of plant-specific transcription factors.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Citocininas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-2/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transporte Proteico , Elementos de Resposta , Fator de Transcrição AP-2/genética , Transcrição Gênica/genética
10.
Plant Cell ; 17(11): 3007-18, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227453

RESUMO

Type-B Arabidopsis thaliana response regulators (ARRs) are transcription factors that function in the final step of two-component signaling systems. To characterize their role in plant growth and development, we isolated T-DNA insertions within six of the genes (ARR1, ARR2, ARR10, ARR11, ARR12, and ARR18) from the largest subfamily of type-B ARRs and also constructed various double and triple combinations of these mutations. Higher order mutants revealed progressively decreased sensitivity to cytokinin, including effects on root elongation, lateral root formation, callus induction and greening, and induction of cytokinin primary response genes. The triple mutant arr1,10,12 showed almost complete insensitivity to cytokinin under many of the assay conditions used. By contrast, no significant change in the sensitivity to ethylene was found among the mutants examined. These results indicate that there is functional overlap among the type-B ARRs and that they act as positive regulators of cytokinin signal transduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Mutação/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Ativação Transcricional/fisiologia
11.
Funct Plant Biol ; 29(8): 1015-1016, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689551

RESUMO

Tissues of the Australian native plant species Hakea actities (Proteaceae) contain numerous metabolites and structural compounds that hinder the isolation of nucleic acids. Separate RNA and genomic DNA extraction procedures were developed to isolate high quality nucleic acids from H. actities. Total RNA was extracted from leaves, roots and cluster roots of H. actities grown in low nutrient levels. Cluster root formation in H. actities only occurs when the plants are grown in low nutrient concentrations. However, under these conditions, nucleic acid extraction becomes increasingly difficult. The new procedures are faster than many of the published nucleic acid extraction protocols, and avoid the use of hazardous chemicals. The RNA extraction method was used successfully on another Australian species and a crop species, suggesting that the procedure is useful for molecular studies of a broad range of plants.

12.
Plant Physiol ; 135(2): 927-37, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15173562

RESUMO

Two-component signaling systems, involving His kinases, His-containing phosphotransfer proteins, and response regulators, have been implicated in plant responses to hormones and environmental factors. Genomic analysis of Arabidopsis supports the existence of 22 response regulators (ARRs) that can be divided into at least two distinct groups designated type-A and type-B. Phylogenetic analysis indicates that the type-B family is composed of one major and two minor subfamilies. The expression of the type-B ARRs was examined by using both reverse transcription-PCR and beta-glucuronidase fusion constructs. The major subfamily of type-B ARRs showed particularly high expression in regions where cytokinins play a significant role, including cells in the apical meristem region and in young leaves that would be undergoing cell division. Multiple members within this same subfamily of type-B ARRs were expressed near the root tip with highest expression in the root elongation zone. beta-Glucuronidase-fusions to full-length ARR2, ARR12, and ARR19 were nuclear localized, consistent with a role in transcriptional regulation. These data suggest that differing expression levels of the type-B ARRs may play a role in modulating the cellular responses to cytokinin.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Plant Cell ; 16(3): 658-71, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14973166

RESUMO

Type-A Arabidopsis (Arabidopsis thaliana) response regulators (ARRs) are a family of 10 genes that are rapidly induced by cytokinin and are highly similar to bacterial two-component response regulators. We have isolated T-DNA insertions in six of the type-A ARRs and constructed multiple insertional mutants, including the arr3,4,5,6,8,9 hextuple mutant. Single arr mutants were indistinguishable from the wild type in various cytokinin assays; double and higher order arr mutants showed progressively increasing sensitivity to cytokinin, indicating functional overlap among type-A ARRs and that these genes act as negative regulators of cytokinin responses. The induction of cytokinin primary response genes was amplified in arr mutants, indicating that the primary response to cytokinin is affected. Spatial patterns of ARR gene expression were consistent with partially redundant function of these genes in cytokinin signaling. The arr mutants show altered red light sensitivity, suggesting a general involvement of type-A ARRs in light signal transduction. Further, morphological phenotypes of some arr mutants suggest complex regulatory interactions and gene-specific functions among family members.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Citocininas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/farmacologia , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas/efeitos dos fármacos , Luz , Mutação , Fenótipo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA