Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(11): e0098823, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37882526

RESUMO

IMPORTANCE: Salt marshes are known for their significant carbon storage capacity, and sulfur cycling is closely linked with the ecosystem-scale carbon cycling in these ecosystems. Sulfate reducers are key for the decomposition of organic matter, and sulfur oxidizers remove toxic sulfide, supporting the productivity of marsh plants. To date, the complexity of coastal environments, heterogeneity of the rhizosphere, high microbial diversity, and uncultured majority hindered our understanding of the genomic diversity of sulfur-cycling microbes in salt marshes. Here, we use comparative genomics to overcome these challenges and provide an in-depth characterization of sulfur-cycling microbial diversity in salt marshes. We characterize communities across distinct sites and plant species and uncover extensive genomic diversity at the taxon level and specific genomic features present in MAGs affiliated with uncultivated sulfur-cycling lineages. Our work provides insights into the partnerships in salt marshes and a roadmap for multiscale analyses of diversity in complex biological systems.


Assuntos
Ecossistema , Áreas Alagadas , Nucleotídeos , Bactérias/genética , Plantas , Enxofre , Carbono
2.
Am Nat ; 200(5): 691-703, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260854

RESUMO

AbstractPredicting evolution in natural systems will require understanding how selection operates in multispecies communities. We predicted that the amount that traits evolve in multispecies mixtures would be less than the amount that would be predicted from the additive contributions of the pairwise interactions and that subordinate species will be more likely to evolve in competitive systems than dominant species. We conducted an experimental test of these predictions using a guild of protozoans found in the water-filled leaves of the pitcher plant Sarracenia purpurea. The response to selection did not significantly change as we increased richness from monocultures to two- and four-species mixtures. In accordance with our second prediction, subordinate species demonstrated greater growth in competition after selection than before, while dominant species generally showed no response to selection. Monod-type experiments to determine minimum resource levels found that the dominant species had much higher resource requirements than the subordinate species and that the minimum resource requirements evolved to be higher in the subordinate species. Importantly, these results suggest that subordinate species evolve to become more similar to dominant species, which may involve resource use convergence. Our findings and other recent works suggest that community diversity can affect evolution in surprising ways that warrant further investigation.


Assuntos
Sarraceniaceae , Folhas de Planta , Água , Fenótipo , Ecossistema
3.
Am J Physiol Renal Physiol ; 319(5): F885-F894, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32985237

RESUMO

Patients with end-stage kidney disease on maintenance hemodialysis commonly develop protein-energy wasting, a syndrome characterized by nutritional and metabolic abnormalities. Nutritional supplementation and exercise are recommended to prevent protein-energy wasting. In a 6-mo prospective randomized, open-label, clinical trial, we reported that the combination of resistance exercise and nutritional supplementation does not have an additive effect on lean body mass measured by dual-energy X-ray absorptiometry. To provide more mechanistic data, we performed a secondary analysis where we hypothesized that the combination of nutritional supplementation and resistance exercise would have additive effects on muscle protein accretion by stable isotope protein kinetic experiments, muscle mass by MRI, and mitochondrial content markers in muscle. We found that 6 mo of nutritional supplementation during hemodialysis increased muscle protein net balance [baseline: 2.5 (-17.8, 13.0) µg·100 mL-1·min-1 vs. 6 mo: 43.7 (13.0, 98.5) µg·100 mL-1·min-1, median (interquartile range), P = 0.04] and mid-thigh fat area [baseline: 162.3 (104.7, 226.6) cm2 vs. 6 mo: 181.9 (126.3, 279.2) cm2, median (interquartile range), P = 0.04]. Three months of nutritional supplementation also increased markers of mitochondrial content in muscle. Although the study is underpowered to detected differences, the combination of nutritional supplementation and exercise failed to show further benefit in protein accretion or muscle cross-sectional area. We conclude that long-term nutritional supplementation increases the skeletal muscle anabolic effect, the fat cross-sectional area of the thigh, and markers of mitochondrial content in skeletal muscle.


Assuntos
Exercício Físico/fisiologia , Homeostase/fisiologia , Falência Renal Crônica/metabolismo , Proteínas Musculares/metabolismo , Diálise Renal/efeitos adversos , Composição Corporal/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Estado Nutricional/fisiologia , Proteostase/fisiologia , Diálise Renal/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-33351140

RESUMO

BACKGROUND: Tissue sodium content in patients on maintenance hemodialysis (MHD) and peritoneal dialysis (PD) were previously explored using 23Sodium magnetic resonance imaging (23NaMRI). Larger studies would provide a better understanding of sodium stores in patients on dialysis as well as the factors influencing this sodium accumulation. METHODS: In this cross-sectional study, we quantified the calf muscle and skin sodium content in 162 subjects (10 PD, 33 MHD patients, and 119 controls) using 23NaMRI. Plasma levels of interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) were measured to assess systemic inflammation. Sixty-four subjects had repeat 23NaMRI scans that were analyzed to assess the repeatability of the 23NaMRI measurements. RESULTS: Patients on MHD and PD exhibited significantly higher muscle and skin sodium accumulation compared to controls. African American patients on dialysis exhibited greater muscle and skin sodium content compared to non-African Americans. Multivariable analysis showed that older age was associated with both higher muscle and skin sodium. Male sex was also associated with increased skin sodium deposition. Greater ultrafiltration was associated with lower skin sodium in patients on PD (Spearman's rho=-0.68, P = 0.035). Higher plasma IL-6 and hsCRP levels correlated with increased muscle and skin sodium content in the overall study population. Patients with higher baseline tissue sodium content exhibited greater variability in tissue sodium stores on repeat measurements. CONCLUSIONS: Our findings highlight greater muscle and skin sodium content in dialysis patients compared to controls without kidney disease. Tissue sodium deposition and systemic inflammation seen in dialysis patients might influence one another bidirectionally.

5.
Biodegradation ; 31(3): 171-182, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32361902

RESUMO

Cometabolic biodegradation of 1,4-dioxane (dioxane) in the presence of primary substrates is a promising strategy for treating dioxane at environmentally relevant concentrations. Seven aqueous amendments (i.e., tetrahydrofuran (THF), butanone, acetone, 1-butanol, 2-butanol, phenol and acetate) and five gaseous amendments (i.e., C1-C4 alkanes and ethylene) were evaluated as the primary substrates for dioxane degradation by mixed microbial consortia. The aqueous amendments were tested in microcosm bottles and the gaseous amendments were tested in a continuous-flow membrane biofilm reactor with hollow fibers pressurized by the gaseous amendments. Ethane was found to be the most effective gaseous substrate and THF was the only aqueous substrate that promoted dioxane degradation. A diverse microbial community consisting of several putative dioxane degraders-Mycobacterium, Flavobacterium and Bradyrhizobiaceae-were enriched in the presence of ethane. This is the first study showing that ethane was the most effective substrate among the short-chain alkanes and it promoted dioxane degradation by enriching dioxane-degraders that did not harbor the well-known dioxane/tetrahydrofuran monooxygenase.


Assuntos
Furanos , Consórcios Microbianos , Biodegradação Ambiental , Dioxanos , Etano
6.
J Am Soc Nephrol ; 30(11): 2252-2261, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511360

RESUMO

BACKGROUND: Patient-centered care for older adults with CKD requires communication about patient's values, goals of care, and treatment preferences. Eliciting this information requires tools that patients understand and that enable effective communication about their care preferences. METHODS: Nephrology clinic patients age ≥60 years with stage 4 or 5 nondialysis-dependent CKD selected one of four responses to the question, "If you had a serious illness, what would be important to you?" Condensed versions of the options were, "Live as long as possible;" "Try treatments, but do not suffer;" "Focus on comfort;" or "Unsure." Patients also completed a validated health outcome prioritization tool and an instrument determining the acceptability of end-of-life scenarios. Patient responses to the three tools were compared. RESULTS: Of the 382 participants, 35% (n=134) selected "Try treatments, but do not suffer;" 33% (n=126) chose "Focus on comfort;" 20% (n=75) opted for "Live as long as possible;" and 12% (n=47) selected "Unsure." Answers were associated with patients' first health outcome priority and acceptability of end-of-life scenarios. One third of patients with a preference to "Focus on comfort" reported that a life on dialysis would not be worth living compared with 5% of those who chose "Live as long as possible" (P<0.001). About 90% of patients agreed to share their preferences with their providers. CONCLUSIONS: Older adults with advanced CKD have diverse treatment preferences and want to share them. A single treatment preference question correlated well with longer, validated health preference tools and may provide a point of entry for discussions about patient's treatment goals.


Assuntos
Preferência do Paciente , Insuficiência Renal Crônica/terapia , Planejamento Antecipado de Cuidados , Idoso , Feminino , Humanos , Modelos Logísticos , Masculino , Assistência Terminal
7.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926731

RESUMO

Tetrahydrofuran (THF) is known to induce the biodegradation of 1,4-dioxane (dioxane), an emerging contaminant, but the mechanisms by which THF affects dioxane biodegradation in microbial communities are not well understood. To fill this knowledge gap, changes in the microbial community structure in microcosm experiments with synthetic medium and landfill leachate were examined over time using 16S rRNA gene amplicon sequencing and functional gene quantitative PCR assays. The overarching hypothesis being tested was that THF promoted dioxane biodegradation by increasing the abundance of dioxane-degrading bacteria in the consortium. The data revealed that in experiments with synthetic medium, the addition of THF significantly increased the abundance of Pseudonocardia, a genus with several representatives that can grow on both dioxane and THF, and of Rhodococcus ruber, a species that can use THF as the primary growth substrate while cometabolizing dioxane. However, in similar experiments with landfill leachate, only R. ruber was significantly enriched. When the THF concentration was higher than the dioxane concentration, THF competitively inhibited dioxane degradation since dioxane degradation was negligible, while the dioxane-degrading bacteria and the corresponding THF/dioxane monooxygenase gene copies increased by a few orders of magnitude.IMPORTANCE Widespread in groundwater and carcinogenic to humans, 1,4-dioxane (dioxane) is attracting significant attention in recent years. Advanced oxidation processes can effectively remove dioxane but require high energy consumption and operation costs. Biological removal of dioxane is of particular interest due to the ability of some bacteria to mineralize dioxane at a low energy cost. Although dioxane is generally considered recalcitrant to biodegradation, more than 20 types of bacteria can degrade dioxane as the sole electron donor substrate or the secondary electron donor substrate. In the latter case, tetrahydrofuran (THF) is commonly studied as the primary electron donor substrate. Previous work has shown that THF promotes dioxane degradation at a low THF concentration but inhibits dioxane degradation at a high THF concentration. Our work expanded on the previous work by mechanically examining the effects of THF on dioxane degradation in a microbial community context.


Assuntos
Dioxanos/metabolismo , Furanos/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Actinobacteria/genética , Actinobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Água Subterrânea , Microbiota/genética , Oxirredução , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/metabolismo
8.
Med Microbiol Immunol ; 208(5): 693-702, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30859301

RESUMO

The suitability of routine diagnostic HIV assays to accurately discriminate between recent and non-recent HIV infections has not been fully investigated. The aim of this study was to compare an established HIV recency assay, the Sedia limiting antigen HIV avidity assay (LAg), with the diagnostic assays; Abbott ARCHITECT HIV Ag/Ab Combo and INNO-LIA HIV line assays. Samples from all new HIV diagnoses in Ireland from January to December 2016 (n = 455) were tested. An extended logistic regression model, the Spiegelhalter-Knill-Jones method, was utilised to establish a scoring system to predict recency of HIV infection. As proof of concept, 50 well-characterised samples were obtained from the CEPHIA repository whose stage of infection was blinded to the authors, which were tested and analysed. The proportion of samples that were determined as recent was 18.1% for LAg, 6.4% with the ARCHITECT, and 14.5% in the INNO-LIA assay. There was a significant correlation between the ARCHITECT S/CO values and the LAg results, r = 0.717, p < 0.001. ROC analysis revealed that an ARCHITECT S/CO < 250 had a sensitivity and specificity of 90.32% and 89.83%, respectively. Combining the Abbott ARCHITECT HIV Ag/Ab Combo assay and INNO-LIA HIV assays resulted in an observed risk of being recent of 100%. Analysis of the CEPHIA samples revealed a strong agreement between the LAg assay and the combination of routine assays (κ = 0.908, p < 0.001). Our findings provide evidence that assays routinely employed to diagnose and confirm HIV infection may be utilised to determine the recency of HIV infection.


Assuntos
Afinidade de Anticorpos , Anticorpos Anti-HIV/sangue , Infecções por HIV/diagnóstico , Testes Sorológicos/métodos , Irlanda , Curva ROC , Sensibilidade e Especificidade
9.
Ecology ; 99(3): 652-660, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29370451

RESUMO

The importance of predators in influencing community structure is a well-studied area of ecology. However, few studies test ecological hypotheses of predation in multi-predator microbial communities. The phytotelmic community found within the water-filled leaves of the pitcher plant, Sarracenia purpurea, exhibits a simple trophic structure that includes multiple protozoan predators and microbial prey. Using this system, we sought to determine whether different predators target distinct microorganisms, how interactions among protozoans affect resource (microorganism) use, and how predator diversity affects prey community diversity. In particular, we endeavored to determine if protozoa followed known ecological patterns such as keystone predation or generalist predation. For these experiments, replicate inquiline microbial communities were maintained for seven days with five protozoan species. Microbial community structure was determined by 16S rRNA gene amplicon sequencing (iTag) and analysis. Compared to the control (no protozoa), two ciliates followed patterns of keystone predation by increasing microbial evenness. In pairwise competition treatments with a generalist flagellate, prey communities resembled the microbial communities of the respective keystone predator in monoculture. The relative abundance of the most common bacterial Operational Taxonomic Unit (OTU) in our system decreased compared to the control in the presence of these ciliates. This OTU was 98% similar to a known chitin degrader and nitrate reducer, important functions for the microbial community and the plant host. Collectively, the data demonstrated that predator identity had a greater effect on prey diversity and composition than overall predator diversity.


Assuntos
Sarraceniaceae , Animais , Ecologia , Cadeia Alimentar , Folhas de Planta/microbiologia , Comportamento Predatório , RNA Ribossômico 16S/genética
10.
Environ Microbiol ; 17(10): 3847-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25818237

RESUMO

Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance.


Assuntos
Archaea/metabolismo , Oxigênio/metabolismo , Anaerobiose , Archaea/classificação , Archaea/genética , DNA Arqueal/genética , Ecossistema , Genes Arqueais , Golfo do México , México , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética
11.
Microb Ecol ; 70(3): 766-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25947096

RESUMO

Anaerobic oxidation of methane (AOM) impacts carbon cycling by acting as a methane sink and by sequestering inorganic carbon via AOM-induced carbonate precipitation. These precipitates commonly take the form of carbonate nodules that form within methane seep sediments. The timing and sequence of nodule formation within methane seep sediments are not well understood. Further, the microbial diversity associated with sediment-hosted nodules has not been well characterized and the degree to which nodules reflect the microbial assemblage in surrounding sediments is unknown. Here, we conducted a comparative study of microbial assemblages in methane-derived authigenic carbonate nodules and their host sediments using molecular, mineralogical, and geochemical methods. Analysis of 16S rRNA gene diversity from paired carbonate nodules and sediments revealed that both sample types contained methanotrophic archaea (ANME-1 and ANME-2) and syntrophic sulfate-reducing bacteria (Desulfobacteraceae and Desulfobulbaceae), as well as other microbial community members. The combination of geochemical and molecular data from Eel River Basin and Hydrate Ridge suggested that some nodules formed in situ and captured the local sediment-hosted microbial community, while other nodules may have been translocated or may represent a record of conditions prior to the contemporary environment. Taken together, this comparative analysis offers clues to the formation regimes and mechanisms of sediment-hosted carbonate nodules.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Sedimentos Geológicos/microbiologia , Bactérias/genética , California , DNA Arqueal/genética , DNA Arqueal/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Meio Ambiente , Dados de Sequência Molecular , Oregon , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
12.
Proteomics ; 13(18-19): 2776-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23776032

RESUMO

Characterization of microbial protein expression provides information necessary to better understand the unique biological pathways that occur within soil microbial communities that contribute to atmospheric CO2 levels and the earth's changing climate. A significant challenge in studying the soil microbial community proteome is the initial dissociation of bacterial proteins from the complex mixture of particles found in natural soil. The differential extraction of intact bacterial cells limits the characterization of the complete representation of a microbial community. However, in situ lysis of bacterial cells in soil can lead to potentially high levels of protein adsorption to soil particles. Here, we investigated various amino acids for their ability to block soil protein adsorption sites prior to in situ lysis of bacterial cells, as well as their compatibility with both tryptic digestion and mass spectrometric analysis. The treatments were tested by adding proteins from lysed Escherichia coli cells to representative treated and untreated soil samples. The results show that it is possible to significantly increase protein identifications through blockage of binding sites on a variety of soil and sediment textures; use of an optimized desorption buffer further increases the number of identifications.


Assuntos
Aminoácidos/farmacologia , Proteínas de Bactérias/isolamento & purificação , Sedimentos Geológicos/química , Proteômica/métodos , Microbiologia do Solo , Soluções Tampão , Cromatografia Líquida , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Espectrometria de Massas , Peptídeos/metabolismo , Reprodutibilidade dos Testes
13.
Environ Sci Technol ; 47(19): 10860-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23937111

RESUMO

The Deepwater Horizon oil spill produced large subsurface plumes of dispersed oil and gas in the Gulf of Mexico that stimulated growth of psychrophilic, hydrocarbon degrading bacteria. We tracked succession of plume bacteria before, during and after the 83-day spill to determine the microbial response and biodegradation potential throughout the incident. Dominant bacteria shifted substantially over time and were dependent on relative quantities of different hydrocarbon fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest proportions of n-alkanes and cycloalkanes at depth and corresponded with dominance by Oceanospirillaceae and Pseudomonas. Once partial capture of oil and gas began 43 days into the spill, petroleum hydrocarbons decreased, the fraction of aromatic hydrocarbons increased, and Colwellia, Cycloclasticus, and Pseudoalteromonas increased in dominance. Enrichment of Methylomonas coincided with positive shifts in the δ(13)C values of methane in the plume and indicated significant methane oxidation occurred earlier than previously reported. Anomalous oxygen depressions persisted at plume depths for over six weeks after well shut-in and were likely caused by common marine heterotrophs associated with degradation of high-molecular-weight organic matter, including Methylophaga. Multiple hydrocarbon-degrading bacteria operated simultaneously throughout the spill, but their relative importance was controlled by changes in hydrocarbon supply.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Biodegradação Ambiental , DNA Bacteriano/genética , Golfo do México , Hidrocarbonetos/análise , Microbiologia da Água , Poluentes Químicos da Água/análise
14.
Ecology ; 104(4): e3912, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36335567

RESUMO

The spatial distribution of predators can affect both the distribution and diversity of their prey. Therefore, differences in predator dispersal ability that affect their spatial distribution, could also affect prey communities. Here, we use the microbial communities within pitcher plant leaves as a model system to test the relationship between predator (protozoa) dispersal ability and distribution, and its consequences for prey (bacteria) diversity and composition. We hypothesized that limited predator dispersal results in clustered distributions and heterogeneous patches for prey species, whereas wide predator dispersal and distribution could homogenize prey metacommunities. We analyzed the distribution of two prominent bacterivore protozoans from a 2-year survey of an intact field of Sarracenia purpurea pitcher plants, and found a clustered distribution of Tetrahymena and homogeneous distribution of Poterioochromonas. We manipulated the sources of protozoan colonists and recorded protozoan recruitment and bacterial diversity in target leaves in a field experiment. We found the large ciliate, Tetrahymena, was dispersal limited and occupied few leaves, whereas the small flagellate Poterioochromonas was widely dispersed. However, the bacterial communities these protozoans feed on was unaffected by clustering of Tetrahymena, but likely influenced by Poterioochromonas and other bacterivores dispersing in the field. We propose that bacterial communities in this system are structured by a combination of well dispersed bacterivores, bacterial dispersal, and bottom-up mechanisms. Clustered predators could become strong drivers of prey communities if they were specialists or keystone predators, or if they exerted a dominant influence on other predators in top-down controlled systems. Linking dispersal ability within trophic levels and its consequences for trophic dynamics can lead to a more robust perspective on trophic metacommunities.


Assuntos
Cilióforos , Microbiota , Animais , Comportamento Predatório , Bactérias , Modelos Biológicos , Dinâmica Populacional , Cadeia Alimentar
15.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36520069

RESUMO

The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.


Assuntos
Plâncton , Água , Golfo do México , Plâncton/genética , Metagenoma , Metano/metabolismo , Filogenia , Metagenômica , RNA Ribossômico 16S/genética
16.
Environ Microbiol ; 14(9): 2405-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22616650

RESUMO

The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability.


Assuntos
Lipídeos , Poluição por Petróleo , Petróleo/metabolismo , Microbiologia da Água , Alteromonadaceae/genética , Alteromonadaceae/isolamento & purificação , Alteromonadaceae/metabolismo , Alteromonadaceae/ultraestrutura , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carga Bacteriana , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Guerra do Golfo , RNA Ribossômico 16S/genética
17.
FEMS Microbiol Ecol ; 98(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413458

RESUMO

Plant-associated microbial communities may be important sources of functional diversity and genetic variation that influence host evolution. Bacteria provide benefits for their hosts, yet in most plant systems we know little about their taxonomic composition or variation across tissues and host range. Red Mangrove (Rhizophora mangle L.) is a vital coastal plant species that is currently expanding poleward and with it, perhaps, its microbiome. We explored variability in bacterial communities across tissues, individuals, and populations. We collected samples from six sample types from 5 to 10 individuals at each of three populations and used 16S rRNA gene (iTag) sequencing to describe their bacterial communities. Core community members and dominant bacterial classes were determined for each sample type. Pairwise PERMANOVA of Bray-Curtis dissimilarity and Indicator Species Analysis revealed significant differences in bacterial communities between sample types and populations. We described the previously unexplored microbiome of the reproductive tissues of R. mangle. Populations and most sample types were associated with distinct communities. Bacterial communities associated with R. mangle are influenced by host geography and sample type. Our study provides a foundation for future work exploring the functional roles of these microbes and their relevance to biogeochemical cycling.


Assuntos
Microbiota , Rhizophoraceae , Humanos , Rhizophoraceae/genética , Rhizophoraceae/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Geografia
18.
Geobiology ; 20(1): 98-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545693

RESUMO

Soil samples from a transect from low to highly hydrocarbon-contaminated soils were collected around the Brazilian Antarctic Station Comandante Ferraz (EACF), located at King George Island, Antarctica. Quantitative PCR (qPCR) analysis of bacterial 16S rRNA genes, 16S rRNA gene (iTag), and shotgun metagenomic sequencing were used to characterize microbial community structure and the potential for petroleum degradation by indigenous microbes. Hydrocarbon contamination did not affect bacterial abundance in EACF soils (bacterial 16S rRNA gene qPCR). However, analysis of 16S rRNA gene sequences revealed a successive change in the microbial community along the pollution gradient. Microbial richness and diversity decreased with the increase of hydrocarbon concentration in EACF soils. The abundance of Cytophaga, Methyloversatilis, Polaromonas, and Williamsia was positively correlated (p-value = <.05) with the concentration of total petroleum hydrocarbons (TPH) and/or polycyclic aromatic hydrocarbons (PAH). Annotation of metagenomic data revealed that the most abundant hydrocarbon degradation pathway in EACF soils was related to alkyl derivative-PAH degradation (mainly methylnaphthalenes) via the CYP450 enzyme family. The abundance of genes related to nitrogen fixation increased in EACF soils as the concentration of hydrocarbons increased. The results obtained here are valuable for the future of bioremediation of petroleum hydrocarbon-contaminated soils in polar environments.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Regiões Antárticas , Hidrocarbonetos/análise , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
19.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33493257

RESUMO

Recent studies have revealed that seagrass blade surfaces, also known as the phyllosphere, are rich habitats for microbes; however, the primary drivers of composition and structure in these microbial communities are largely unknown. This study utilized a reciprocal transplant approach between two sites with different environmental conditions combined with 16S rRNA gene sequencing (iTag) to examine the relative influence of environmental conditions and host plant on phyllosphere community composition of the seagrass Thalassia testudinum. After 30 days, identity of phyllosphere microbial community members was more similar within the transplant sites than between despite differences in the source of host plant. Additionally, the diversity and evenness of these communities was significantly different between the two sites. These results indicated that local environmental conditions can be a primary driver in structuring seagrass phyllosphere microbial communities over relatively short time scales. Composition of microbial community members in this study also deviated from those in previous seagrass phyllosphere studies with a higher representation of candidate bacterial phyla and archaea than previously observed. The capacity for seagrass phyllosphere microbial communities to shift dramatically with environmental conditions, including ecosystem perturbations, could significantly affect seagrass-microbe interactions in ways that may influence the health of the seagrass host.


Assuntos
Hydrocharitaceae , Microbiota , Bactérias/genética , Folhas de Planta , RNA Ribossômico 16S/genética
20.
PLoS One ; 16(10): e0259357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699569

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0235441.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA