Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 29(18): 185101, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446757

RESUMO

Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting. In the present study, we utilize a tabletop stereolithography-based 3D bioprinter for a novel cell-laden cartilage tissue construct fabrication. Printable resin is composed of 10% gelatin methacrylate (GelMA) base, various concentrations of polyethylene glycol diacrylate (PEGDA), biocompatible photoinitiator, and transforming growth factor beta 1 (TGF-ß1) embedded nanospheres fabricated via a core-shell electrospraying technique. We find that the addition of PEGDA into GelMA hydrogel greatly improves the printing resolution. Compressive testing shows that modulus of the bioprinted scaffolds proportionally increases with the concentrations of PEGDA, while swelling ratio decreases with the increase of PEGDA concentration. Confocal microscopy images illustrate that the cells and nanospheres are evenly distributed throughout the entire bioprinted construct. Cells grown on 5%/10% (PEGDA/GelMA) hydrogel present the highest cell viability and proliferation rate. The TGF-ß1 embedded in nanospheres can keep a sustained release up to 21 d and improve chondrogenic differentiation of encapsulated MSCs. The cell-laden bioprinted cartilage constructs with TGF-ß1-containing nanospheres is a promising strategy for cartilage regeneration.


Assuntos
Bioimpressão , Cartilagem/fisiologia , Células-Tronco Mesenquimais/citologia , Nanosferas/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Cartilagem/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Tinta , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanosferas/ultraestrutura , Estresse Mecânico , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/farmacologia
2.
Nanomedicine ; 11(3): 693-704, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596341

RESUMO

Neural tissue engineering offers a promising avenue for repairing neural injuries. Advancement in nanotechnology and neural scaffold manufacturing strategies has shed light on this field into a new era. In this study, a novel tissue engineered scaffold, which possesses highly aligned poly-ε-caprolactone microfibrous framework and adjustable bioactive factor embedded poly (d, l-lactide-co-glycolide) core-shell nanospheres, was fabricated by combining electrospinning and electrospraying techniques. The fabricated nanocomposite scaffold has cell favorable nanostructured feature and improved hydrophilic surface property. More importantly, by incorporating core-shell nanospheres into microfibrous scaffold, a sustained bioactive factor release was achieved. Results show rat pheochromocytoma (PC-12) cell proliferation was significantly promoted on the nanocomposite scaffold. In addition, confocal microscope images illustrated that the highly aligned scaffold increased length of neurites and directed neurites extension along the fibers in both PC-12 and astrocyte cell lines, which indicates that the scaffold is promising for guiding neural tissue growth and regeneration. From the clinical editor: In an attempt to direct neural cell growth, biomimetic neural scaffold was produced by electrospinning integrated with co-axial electrospraying techniques. In-vitro data provided a framework for future designs for neuronal regeneration.


Assuntos
Proliferação de Células , Nanocompostos/química , Neuritos/metabolismo , Poliglactina 910/química , Regeneração , Alicerces Teciduais/química , Animais , Células PC12 , Ratos
3.
ACS Appl Mater Interfaces ; 10(10): 8993-9001, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29461046

RESUMO

Central nerve repair and regeneration remain challenging problems worldwide, largely because of the extremely weak inherent regenerative capacity and accompanying fibrosis of native nerves. Inadequate solutions to the unmet needs for clinical therapeutics encourage the development of novel strategies to promote nerve regeneration. Recently, 3D bioprinting techniques, as one of a set of valuable tissue engineering technologies, have shown great promise toward fabricating complex and customizable artificial tissue scaffolds. Gelatin methacrylate (GelMA) possesses excellent biocompatible and biodegradable properties because it contains many arginine-glycine-aspartic acids (RGD) and matrix metalloproteinase sequences. Dopamine (DA), as an essential neurotransmitter, has proven effective in regulating neuronal development and enhancing neurite outgrowth. In this study, GelMA-DA neural scaffolds with hierarchical structures were 3D-fabricated using our custom-designed stereolithography-based printer. DA was functionalized on GelMA to synthesize a biocompatible printable ink (GelMA-DA) for improving neural differentiation. Additionally, neural stem cells (NSCs) were employed as the primary cell source for these scaffolds because of their ability to terminally differentiate into a variety of cell types including neurons, astrocytes, and oligodendrocytes. The resultant GelMA-DA scaffolds exhibited a highly porous and interconnected 3D environment, which is favorable for supporting NSC growth. Confocal microscopy analysis of neural differentiation demonstrated that a distinct neural network was formed on the GelMA-DA scaffolds. In particular, the most significant improvements were the enhanced neuron gene expression of TUJ1 and MAP2. Overall, our results demonstrated that 3D-printed customizable GelMA-DA scaffolds have a positive role in promoting neural differentiation, which is promising for advancing nerve repair and regeneration in the future.


Assuntos
Dopamina/química , Bioimpressão , Regeneração , Engenharia Tecidual , Alicerces Teciduais
4.
Biofabrication ; 10(3): 035007, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29651999

RESUMO

4D printing is a highly innovative additive manufacturing process for fabricating smart structures with the ability to transform over time. Significantly different from regular 4D printing techniques, this study focuses on creating novel 4D hierarchical micropatterns using a unique photolithographic-stereolithographic-tandem strategy (PSTS) with smart soybean oil epoxidized acrylate (SOEA) inks for effectively regulating human bone marrow mesenchymal stem cell (hMSC) cardiomyogenic behaviors. The 4D effect refers to autonomous conversion of the surficial-patterned scaffold into a predesigned construct through an external stimulus delivered immediately after printing. Our results show that hMSCs actively grew and were highly aligned along the micropatterns, forming an uninterrupted cellular sheet. The generation of complex patterns was evident by triangular and circular outlines appearing in the scaffolds. This simple, yet efficient, technique was validated by rapid printing of scaffolds with well-defined and consistent micro-surface features. A 4D dynamic shape change transforming a 2-D design into flower-like structures was observed. The printed scaffolds possessed a shape memory effect beyond the 4D features. The advanced 4D dynamic feature may provide seamless integration with damaged tissues or organs, and a proof of concept 4D patch for cardiac regeneration was demonstrated for the first time. The 4D-fabricated cardiac patch showed significant cardiomyogenesis confirmed by immunofluorescence staining and qRT-PCR analysis, indicating its promising potential in future tissue and organ regeneration applications.


Assuntos
Miócitos Cardíacos/citologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA