Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Immunity ; 57(8): 1734-1751, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142275

RESUMO

Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.


Assuntos
Memória Imunológica , Células T de Memória , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Células T de Memória/imunologia , Animais , Memória Imunológica/imunologia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia
2.
J Immunol ; 212(11): 1621-1625, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619284

RESUMO

Humans experience frequent respiratory infections. Immunology and vaccinology studies in mice are typically performed in naive specific pathogen-free animals responding to their very first respiratory challenge. We found that the first respiratory infection induces lifelong enlargement of the lung-draining mediastinal lymph nodes (medLNs). Furthermore, infection-experienced medLNs supported better naive T cell surveillance and effector responses to new unrelated infections that exhibited more biased accumulation and memory establishment within the lung. Moreover, we observed that weight loss induced by influenza infection was substantially reduced in mice that had recovered from a previous unrelated respiratory viral challenge. These data show that the lack of infectious history and corresponding medLN hypoplasia in specific pathogen-free mice alter their immune response to lung infections. Preclinical vaccination and immunology studies should consider the previous infectious experience of the model organism.


Assuntos
Pulmão , Linfonodos , Infecções por Orthomyxoviridae , Animais , Camundongos , Linfonodos/imunologia , Infecções por Orthomyxoviridae/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia , Memória Imunológica/imunologia , Mediastino , Infecções Respiratórias/imunologia
3.
mSphere ; 9(2): e0065423, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286428

RESUMO

Specific pathogen-free (SPF) laboratory mice dominate preclinical studies for immunology and vaccinology. Unfortunately, SPF mice often fail to accurately model human responses to vaccination and other immunological perturbations. Several groups have taken different approaches to introduce additional microbial experience to SPF mice to better model human immune experience. How these different models compare is unknown. Here, we directly compare three models: housing SPF mice in a microbe-rich barn-like environment (feralizing), adding wild-caught mice to the barn-like environment (fer-cohoused), or cohousing SPF mice with pet store mice in a barrier facility (pet-cohoused); the two latter representing different murine sources of microbial transmission. Pet-cohousing mice resulted in the greatest microbial exposure. Feralizing alone did not result in the transmission of any pathogens tested, while fer-cohousing resulted in the transmission of several picornaviruses. Murine astrovirus 2, the most common pathogen from pet store mice, was absent from the other two model systems. Previously, we had shown that pet-cohousing reduced the antibody response to vaccination compared with SPF mice. This was not recapitulated in either the feralized or fer-cohoused mice. These data indicate that not all dirty mouse models are equivalent in either microbial experience or immune responses to vaccination. These disparities suggest that more cross model comparisons are needed but also represent opportunities to uncover microbe combination-specific phenotypes and develop more refined experimental models. Given the breadth of microbes encountered by humans across the globe, multiple model systems may be needed to accurately recapitulate heterogenous human immune responses.IMPORTANCEAnimal models are an essential tool for evaluating clinical interventions. Unfortunately, they can often fail to accurately predict outcomes when translated into humans. This failure is due in part to a lack of natural infections experienced by most laboratory animals. To improve the mouse model, we and others have exposed laboratory mice to microbes they would experience in the wild. Although these models have been growing in popularity, these different models have not been specifically compared. Here, we directly compare how three different models of microbial experience impact the immune response to influenza vaccination. We find that these models are not the same and that the degree of microbial exposure affects the magnitude of the response to vaccination. These results provide an opportunity for the field to continue comparing and contrasting these systems to determine which models best recapitulate different aspects of the human condition.


Assuntos
Imunidade , Vacinação , Animais , Camundongos , Humanos , Modelos Animais de Doenças , Organismos Livres de Patógenos Específicos
4.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895229

RESUMO

Interleukin-7 (IL-7) is considered a critical regulator of memory CD8+ T cell homeostasis, but this is primarily based on analysis of circulating and not tissue-resident memory (TRM) subsets. Furthermore, the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not been directly tested. Using inducible deletion, we found that Il7ra loss had only a modest effect on persistence of circulating memory and TRM subsets and that IL-7Rα was primarily required for normal basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Rα dependence on memory CD8+ T cells, including TRM populations previously described as IL-15-independent. In the absence of IL-15 signaling, IL-7Rα was upregulated, and loss of IL-7Rα signaling reduced proliferation in response to IL-15, suggesting cross-regulation in memory CD8+ T cells. Thus, across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8+ T cells, conferring resilience to altered availability of either cytokine.

5.
Nat Aging ; 4(8): 1053-1063, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38867059

RESUMO

Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.


Assuntos
Senescência Celular , Epigênese Genética , Animais , Humanos , Camundongos , Senescência Celular/genética , Senescência Celular/imunologia , Envelhecimento/imunologia , Envelhecimento/genética , Linfócitos T/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Senescência de Células T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA