RESUMO
Growth in unconventional oil and gas development (UOGD) in the United States has increased airborne emissions, raising environmental and human health concerns. To assess the potential impacts on air quality, we deployed instrumentation in Karnes City, Texas, a rural area in the middle of the Eagle Ford Shale. We measured several episodes of elevated Cl2 levels, reaching maximum hourly averages of 800 ppt, the highest inland Cl2 concentration reported to date. Concentrations peak during the day, suggesting a strong local source (given the short photolysis lifetime of Cl2) and/or a photoinitiated production mechanism. Well preproduction activity near the measurement site is a plausible source of these high Cl2 levels via direct emission and photoactive chemistry. ClNO2 is also observed, but it peaks overnight, consistent with well-known nocturnal formation processes. Observations of organochlorines in the gas and particle phases reflect the contribution of chlorine chemistry to the formation of secondary pollutants in the area. Box modeling results suggest that the formation of ozone at this location is influenced by chlorine chemistry. These results suggest that UOGD can be an important source of reactive chlorine in the atmosphere, impacting radical budgets and the formation of secondary pollutants in these regions.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Estados Unidos , Humanos , Cloro/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Texas , Campos de Petróleo e Gás , Gás NaturalRESUMO
Fine particulate matter (PM2.5) is a key indicator of urban air quality. Secondary organic aerosol (SOA) contributes substantially to the PM2.5 concentration. Discrepancies between modeling and field measurements of SOA indicate missing sources and formation mechanisms. Recent studies report elevated concentrations of reactive chlorine species in inland and urban regions, which increase the oxidative capacity of the atmosphere and serve as sources for SOA and particulate chlorides. Chlorine-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon, is known to produce SOA under pristine conditions, but the effects of anthropogenic influences in the form of nitrogen oxides (NOx) remain unexplored. Here, we investigate chlorine-isoprene reactions under low- and high-NOx conditions inside an environmental chamber. Organic chlorides including C5H11ClO3, C5H9ClO3, and C5H9ClO4 are observed as major gas- and particle-phase products. Modeling and experimental results show that the secondary OH-isoprene chemistry is significantly enhanced under high-NOx conditions, accounting for up to 40% of all isoprene oxidized and leading to the suppression of organic chloride formation. Chlorine-initiated oxidation of isoprene could serve as a source for multifunctional (chlorinated) organic oxidation products and SOA in both pristine and anthropogenically influenced environments.
Assuntos
Poluentes Atmosféricos , Cloro , Aerossóis/análise , Poluentes Atmosféricos/análise , Butadienos , Cloretos , Halogênios , Hemiterpenos , Material Particulado/análiseRESUMO
Understanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study. We demonstrate how the complex spectra of EESI-MS are screened in order to extract chemical information and investigate the possibility of interference from gas-phase semivolatile species. During experiments that simulated the Thanksgiving US holiday meal preparation, EESI-MS quantified multiple species, including fatty acids, carbohydrates, siloxanes, and phthalates. Intercomparisons with Aerosol Mass Spectrometer (AMS) and Scanning Mobility Particle Sizer suggest that EESI-MS quantified a large fraction of OA. Comparisons with FIGAERO-CIMS shows similar signal levels and good correlation, with a range of 100 for the relative sensitivities. Comparisons with SV-TAG for phthalates and with SV-TAG and AMS for total siloxanes also show strong correlation. EESI-MS observations can be used with gas-phase measurements to identify co-emitted gas- and aerosol-phase species, and this is demonstrated using complementary gas-phase PTR-MS observations.
Assuntos
Aerossóis/análise , Poluição do Ar em Ambientes Fechados , Espectrometria de Massas por Ionização por Electrospray , Monitoramento Ambiental/métodos , Compostos OrgânicosRESUMO
Atmospheric simulation chambers continue to be indispensable tools for research in the atmospheric sciences. Insights from chamber studies are integrated into atmospheric chemical transport models, which are used for science-informed policy decisions. However, a centralized data management and access infrastructure for their scientific products had not been available in the United States and many parts of the world. ICARUS (Integrated Chamber Atmospheric data Repository for Unified Science) is an open access, searchable, web-based infrastructure for storing, sharing, discovering, and utilizing atmospheric chamber data [https://icarus.ucdavis.edu]. ICARUS has two parts: a data intake portal and a search and discovery portal. Data in ICARUS are curated, uniform, interactive, indexed on popular search engines, mirrored by other repositories, version-tracked, vocabulary-controlled, and citable. ICARUS hosts both legacy data and new data in compliance with open access data mandates. Targeted data discovery is available based on key experimental parameters, including organic reactants and mixtures that are managed using the PubChem chemical database, oxidant information, nitrogen oxide (NOx) content, alkylperoxy radical (RO2) fate, seed particle information, environmental conditions, and reaction categories. A discipline-specific repository such as ICARUS with high amounts of metadata works to support the evaluation and revision of atmospheric model mechanisms, intercomparison of data and models, and the development of new model frameworks that can have more predictive power in the current and future atmosphere. The open accessibility and interactive nature of ICARUS data may also be useful for teaching, data mining, and training machine learning models.