Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Expert Rev Proteomics ; 19(3): 213-225, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191333

RESUMO

INTRODUCTION: Cutaneous leishmaniasis (CL) is the most frequent form of leishmaniases, associated with skin inflammation and ulceration. Understanding the interaction of different phagocytic cells in the recognition and uptake of different Leishmania species is critical for controlling the infection. Phagocytic cells have a pivotal role as professional antigen-presenting cells that bridge the innate and adaptive immunity and shape the outcome of the disease. AREAS COVERED: Here we reviewed new technologies with high-throughput data collection capabilities along with systems biology approaches which are recently being used to decode the paradox of CL immunology. EXPERT OPINION: We emphasized on the crosstalk between DC and T-cells while focusing on the immune checkpoints interactions between the human immune system and the Leishmania species. Further, we discussed omics technologies including bulk RNA sequencing, reverse transcriptase-multiplex ligation dependent probe amplification (RT-MLPA), and proximity extension assay (PEA) in studies on human blood or tissue-driven samples from CL patients in which we have so far been involved.


Assuntos
Leishmania , Leishmaniose Cutânea , Humanos , Leishmaniose Cutânea/genética , Leishmania/genética , DNA Polimerase Dirigida por RNA
2.
Expert Rev Proteomics ; 17(7-8): 533-541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886890

RESUMO

INTRODUCTION: Cutaneous leishmaniasis (CL), caused by different Leishmania parasite species, is associated with parasite-induced immune-mediated skin inflammation and ulceration. Whereas many CL studies focus on gene expression signatures in mouse models, the transcriptional response driving human patients in the field is less characterized. Human studies in CL disease provide the opportunity to directly investigate the host-pathogen interaction in the cutaneous lesion site. AREAS COVERED: Advances in high-throughput sequencing technologies, particularly their application for evaluation of the global gene expression changes, have made transcriptomics as a powerful tool to understand the pathogen-host molecular interactions. EXPERT COMMENTARY: In this review, we focus on the transcriptomics studies that have been performed so far on human blood or tissue-driven samples to investigate Leishmania parasites interplay with the CL patients. Further, we summarize microarray and RNA-seq studies associated with lesion biopsies of CL patients to discuss how current whole genome analysis along with systems biology approaches have developed novel CL biomarkers for further applications, not only for research, but also for accelerating vaccine development.


Assuntos
Processamento Alternativo , Interações Hospedeiro-Patógeno/genética , Leishmaniose Cutânea/genética , Transcriptoma/genética , Biologia Computacional , Humanos , Leishmania/patogenicidade , Leishmaniose Cutânea/parasitologia , RNA-Seq
3.
Cytokine ; 130: 155056, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32199248

RESUMO

BACKGROUND: Cutaneous leishmaniasis (CL) is an infection caused by Leishmania (L.) protozoa transmitted through the bite of infected sand fly. Previously, invasive sampling of blood and skin along with low throughput methods were used for determination of inflammatory response in CL patients. AIMS/METHODOLOGY: We established a novel approach based on a non-invasive adhesive tape-disc sampling combined with a powerful multiplexing technique called proximity extension assay for profiling 92 inflammatory cytokines, chemokines and surface molecules in the lesions of CL patients infected with L. tropica. Sample collection was done non-invasively by using adhesive tape-discs from lesion and normal skin of 33 L. tropica positive patients. RESULTS: Out of 92 inflammatory proteins, the level of 34 proteins was significantly increased in the lesions of CL patients compared to their normal skin. This includes the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL5, CXCL9, CXCL10 and CXCL11, together with the interleukins IL-6, IL-8, IL-18, LIF and OSM. The remaining significantly changed inflammatory proteins include 7 surface molecules and receptors: CD5, CD40, CDCP1, 4E-BP1, TNFRSF9, IL-18R1 and OPG as well as 16 other cytokines and proteins: MMP-1, CSF-1, VEGFA, uPA, EN-RAGE, LAP TGF-ß1, HGF, MMP-10, CASP-8, TNFSF14, STAMPB, ADA, TRAIL and ST1A1. Further, 13 proteins showed an increasing trend, albeit not statistically significant, in the CL lesions, including TGF-α, CCL23, MCP-2, IL-12B, CXCL6, IL-24, FGF-19, TNFß, CD6, TRANCE, IL10, SIR2 and CCL20. CONCLUSION: We herein report a novel approach based on a non-invasive sampling method combined with the high-throughput protein assay for profiling inflammatory proteins in CL lesions. Using this approach, we could profile inflammatory proteins in the lesions from CL patients. This new non-invasive approach may have implications for studying skin inflammatory mediators in CL and other skin disorders.

4.
Protein Expr Purif ; 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24794501

RESUMO

The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

5.
Mol Immunol ; 149: 165-173, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905592

RESUMO

Cutaneous leishmaniasis (CL) is a neglected tropical disease with severe morbidity and socioeconomic sequelae. A better understanding of underlying immune mechanisms that lead to different clinical outcomes of CL could inform the rational design of intervention measures. While transcriptomic analyses of CL lesions were recently reported by us and others, there is a dearth of information on the expression of immune-related genes in the blood of CL patients. Herein, we investigated immune-related gene expression in whole blood samples collected from individuals with different clinical stages of CL along with healthy volunteers in an endemic CL region where Leishmania (L.) tropica is prevalent. Study participants were categorized into asymptomatic (LST+) and healthy uninfected (LST-) groups based on their leishmanin skin test (LST). Whole blood PAXgene samples were collected from volunteers, who had healed CL lesions, and patients with active L. tropica cutaneous lesions. Quality RNA extracted from 57 blood samples were subjected to Dual-color reverse-transcription multiplex ligation-dependent probe amplification (dcRT-MLPA) assay for profiling 144 immune-related genes. Results show significant changes in the expression of genes involved in interferon signaling pathway in the blood of active CL patients, asymptomatics and healed individuals. Nonetheless, distinct profiles for several immune-related genes were identified in the healed, the asymptomatic, and the CL patients compared to the healthy controls. Among others, IFI16 and CCL11 were found as immune transcript signatures for the healed and the asymptomatic individuals, respectively. These results warrant further exploration to pinpoint novel blood biomarkers for different clinical stages of CL.


Assuntos
Leishmania , Leishmaniose Cutânea , Perfilação da Expressão Gênica , Humanos , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/genética , Testes Cutâneos
6.
Sci Rep ; 10(1): 16198, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004861

RESUMO

Anthroponotic cutaneous leishmaniasis (CL) caused by Leishmania tropica (L. tropica) represents a public health challenge in several resource poor settings. We herein employed a systems analysis approach to study molecular signatures of CL caused by L. tropica in the skin lesions of ulcerative CL (UCL) and non-ulcerative CL (NUCL) patients. Results from RNA-seq analysis determined shared and unique functional transcriptional pathways in the lesions of the UCL and NUCL patients. Several transcriptional pathways involved in inflammatory response were positively enriched in the CL lesions. A multiplexed inflammatory protein analysis showed differential profiles of inflammatory cytokines and chemokines in the UCL and NUCL lesions. Transcriptional pathways for Fcγ receptor dependent phagocytosis were among shared enriched pathways. Using L. tropica specific antibody (Ab)-mediated phagocytosis assays, we could substantiate Ab-dependent cellular phagocytosis (ADCP) and Ab-dependent neutrophil phagocytosis (ADNP) activities in the lesions of the UCL and NUCL patients, which correlated with L. tropica specific IgG Abs. Interestingly, a negative correlation was observed between parasite load and L. tropica specific IgG/ADCP/ADNP in the skin lesions of CL patients. These results enhance our understanding of human skin response to CL caused by L. tropica.


Assuntos
Biomarcadores/análise , Leishmania tropica/isolamento & purificação , Leishmaniose Cutânea/diagnóstico , Carga Parasitária/estatística & dados numéricos , RNA-Seq/métodos , Pele/patologia , Estudos de Casos e Controles , Citocinas/análise , Humanos , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Pele/metabolismo , Pele/parasitologia
7.
Acta Trop ; 176: 236-241, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28842129

RESUMO

Leishmania (L.) tropica is the main causative agent of anthroponotic cutaneous leishmaniasis (CL) in Iran. Defining the host inflammatory response in the L. tropica lesions are crucial for the development of new treatment modalities. High-throughput RNA sequencing provides a powerful method for characterization of the human gene expression profile in L. tropica lesions. Comparing the transcription profile of the L. tropica skin lesions with normal skin identified over 5000 differentially regulated genes. Gene set enrichment analysis indicated significant activation of key immunological pathways related to antigen processing and presentation. In addition, we observed a substantial upregulation of immunoglobulin genes in lesion samples, highlighting the remarkable involvement of B cells in the infection site. To our knowledge, this study is the first report to build a comprehensive picture of transcriptome changes in acute human skin lesions during infection by L. tropica.


Assuntos
Leishmania tropica/genética , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Humanos , Irã (Geográfico)
8.
J Biotechnol ; 186: 49-57, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24997353

RESUMO

In the current study, different protein expression profiles in a strain Brevundimonas sp. ZF12, isolated from the aqueous zone containing high levels of radiation, were characterized following exposure to cadmium (II) using a proteomic strategy. In order to gain a deeper understanding of the cellular events that allow this strain to survive and undergo cadmium adaptation and sorption, the strain was tested under three experimental conditions of 5, 10 and 30 ppm cadmium (II) ions stress. Two-dimensional polyacrylamide gel electrophoresis and mass spectrometry were used to identify the differentially expressed proteins under cadmium (II) stress. 20 differentially expressed spots were successfully identified by MS/MS analysis. These proteins are involved in DNA repair and protection, amino acid metabolism, nucleotide metabolism, energy homeostasis, oxidative stress response, redox homeostasis, protein folding and heat-shock response. The results obviously indicate that the ZF12 strain tends to endure the cadmium (II) stress conditions by modification in many aspects of its cellular physiology and metabolism.


Assuntos
Proteínas de Bactérias/análise , Cádmio/toxicidade , Caulobacteraceae/efeitos dos fármacos , Caulobacteraceae/metabolismo , Proteoma/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Fontes Termais/microbiologia , Espectrometria de Massas , Estresse Oxidativo , Proteoma/análise , Proteoma/química , Proteoma/metabolismo
9.
J Hazard Mater ; 197: 190-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21983169

RESUMO

The aim of this study is to screen cadmium biosorbing bacterial strains isolated from soils and hot-springs containing high concentrations of radium ((226)Ra) in Ramsar using a batch system. Brevundimonas sp. ZF12 strain isolated from the water with high (226)Ra content caused 50% removal of cadmium at a concentration level of 250 ppm. The biosorption equilibrium data are fitted well by the Langmuir adsorption isotherm and kinetic studies indicated that the biosorption follows pseudo second-order model. The effect of different physico-chemical parameters like biomass concentration, pH, cadmium concentration, temperature and contact time on cadmium sorption was also investigated using FTIR, SEM and XRD analytical techniques. A high desorption efficiency (above 90%) was obtained using a pH range of 2.0-4.0. Reusability of the biomass was examined under consecutive biosorption-desorption cycles repeated thrice. In conclusion, Brevundimonas sp. ZF12 is proposed as an excellent cadmium biosorbent that may have important applications in Cd removal from wastewaters.


Assuntos
Radiação de Fundo , Cádmio/metabolismo , Fontes Termais/microbiologia , Proteobactérias/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA