Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Virol ; 169(5): 93, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592561

RESUMO

Parsley yellow leaf curl virus (PYLCV) is a new member of the family Geminiviridae that has not yet been assigned to an established genus due to limited information about its biological properties. In this study, the ability of Austroagallia leafhoppers, which are commonly found on vegetable farms in Kerman province (Iran), to transmit this virus was studied. After a two-day acquisition access period, Austroagallia sp. successfully transmitted the virus from PYLCV-infected parsley to healthy seedlings. On the basis of male genitalia morphology, the species of leafhopper was identified as A. sinuata. This is the first report of a transmission of plant virus by a member of the genus Austroagallia.


Assuntos
Geminiviridae , Petroselinum , Fazendas , Geminiviridae/genética , Nível de Saúde , Irã (Geográfico)
2.
Virus Genes ; 57(3): 293-301, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33881682

RESUMO

Parsley severe stunt-associated virus (PSSaV) is a recently identified nanovirus first reported in Germany. During a survey for identification of nanoviruses infecting apiaceous plants in south-eastern Iran, PSSaV was identified and characterized using a combination of rolling circle amplification (RCA) and high-throughput sequencing. Parsley plant samples were collected from vegetable production farms in Kerman province. From two symptomatic samples (39Ba and 40Ba), seven PSSaV components (DNA-C, -S, -M, -R, -N, -U1 and -U2) with two phylogenetically distinct variants of DNA-R (R1 and R2) were identified. In common with the German isolate of PSSaV, no DNA-U4 component was identified. In addition, associated alphasatellite molecules were identified in samples 39Ba [n = 6] and 40Ba [n = 5]. Sequence analyses showed that concatenated component sequences of the two Iranian PSSaVs share 97.2% nucleotide identity with each other and 82% to the German isolate. The coat proteins (CPs) of the PSSaV Iranian sequences share 97.2% amino acid identity and ~ 84% identity with that of the German isolate. Sequence and phylogenetic analyses of a total of 11 recovered alphasatellites from the two samples can be classified into the genera Fabenesatellite [n = 2], Milvetsatellite [n = 1], Mivedwarsatellite [n = 2], Subclovsatellite [n = 2], Sophoyesatellite [n = 4] in the family Alphasatellitidae. Identification of PSSaV and other nanoviruses in wild and cultivated plants in Iran reveals that nanoviruses could be causing yield reduction in crops plants in this country.


Assuntos
Genoma Viral/genética , Petroselinum/virologia , Doenças das Plantas/genética , Vírus de Plantas/genética , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irã (Geográfico) , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus Satélites/genética
3.
Virus Genes ; 54(6): 840-845, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30311179

RESUMO

Turncurtoviruses (family: Geminiviridae; genus: Turncurtovirus) appear to have a high degree of genetic variation in Iran. Leafhoppers of the species Circulifer haematoceps (Mulsant and Rey, 1855) (family: Cicadellidae) were collected in 2014 from three geographical regions in south-eastern Iran (Orzoeyeh, Jiroft and Sirjan; Kerman province) and screened for the presence of turncurtoviruses using a combination of PCR and rolling circle amplification (RCA) methods. Eleven genomes of turncurtovirus were recovered and sequenced. Leafhoppers were sampled off sesame (S. indicum L.) and turnip (Brassica rapa sub sp. rapa). Thus, we identified three symptomatic sesame plants (yellowing, boat-shaped leaf curling, vein swelling on the lower leaf surfaces) from sesame farms in Jiroft. In these samples, we identified the same turncurtovirus as in the leafhoppers and have named it sesame curly top virus (SeCTV). Collectively, these SeCTV share > 98% genome-wide pairwise identity and ~ 87.3% to a recently identified turncurtovirus (sesame yellow mosaic virus; SeYMV) from sesame in Pakistan (GenBank accession MF344550). The SeCTV and SeYMV sequences share < 70% genome-wide pairwise identity with isolates of Turnip curly top virus and Turnip leaf roll virus, the two species in the genus Turncurtovirus. Based on the pairwise identities and phylogenetic analysis, SeCTV (n = 12) and SeYMV (n = 1) represent two strains of a new species in the genus Turncurtovirus.


Assuntos
Geminiviridae/genética , Hemípteros/virologia , Sesamum/virologia , Animais , Geminiviridae/isolamento & purificação , Genes Virais , Genoma Viral , Genômica/métodos , Filogenia
4.
Virus Genes ; 53(2): 323-327, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28004232

RESUMO

Beet curly top Iran virus (BCTIV) is a distinct geminivirus which has been reported from sugar-beet-growing farms in Iran. In this study, the role of the splicing in expression of complementary-sense genes of BCTIV was studied. Total RNA was extracted from BCTIV-infected tissue, and the predicted intron position of complementary-sense mRNA transcripts was amplified by RT-PCR followed by cloning of the amplicons. Sequence confirmed that both spliced and unspliced mRNAs are synthesized by the same transcription unit. Sequence comparison showed that a 155-nt segment (intron) corresponding to nucleotides 1890-2044 of the viral genome has been removed from the latter transcript and therefore fusion of the C1:C2 genes resulted creation of a continuous reading frame for potential production of intact replication initiator protein (Rep). BCTIV intron comprises of most consensus splicing signals required for splicing in eukaryotes and several plant viruses including mastre- and capulaviruses.


Assuntos
Geminiviridae/genética , Filogenia , Splicing de RNA/genética , Proteínas Virais/genética , Beta vulgaris/virologia , Geminiviridae/patogenicidade , Genoma Viral , Irã (Geográfico) , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírion/genética
5.
Arch Virol ; 161(3): 551-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26611911

RESUMO

Turnip curly top virus (TCTV) is the only member of the newly established genus Turncurtovirus (family Geminiviridae). As part of an ongoing study to identify additional plant hosts and the diversity of turncurtoviruses, between 2012 and 2014, we sampled symptomatic turnip plants and other crops in the provinces Fars and Khorasan Razavi (southern and northeastern Iran, respectively). Infection by turncurtoviruses was tested by PCR and/or rolling-circle amplification (RCA) coupled with restriction enzyme digests. Turncurtoviruses were identified in turnip as well as seven other field crops, including eggplant, basil, radish, lettuce, sugar beet, red beet and spinach. Full turncurtovirus genomes were recovered from 25 of these samples, leading to the identification of TCTV and a new putative turncurtovirus, turnip leaf roll virus (TLRV; 13 isolates), which shares <80% genome-wide pairwise identity with TCTV. Agroinoculation of plants with an infectious clone of TLRV demonstrated that this virus could infect several plant hosts under greenhouse conditions and could be transmitted by the leafhopper Circulifer haematoceps (Mulsant and Rey, 1855) from agroinoculated to healthy plants.


Assuntos
Produtos Agrícolas/virologia , Geminiviridae/classificação , Geminiviridae/genética , Variação Genética , Doenças das Plantas/virologia , Análise por Conglomerados , Geminiviridae/isolamento & purificação , Genoma Viral , Irã (Geográfico) , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Filogenia , RNA Viral/genética , Mapeamento por Restrição , Análise de Sequência de DNA , Homologia de Sequência
6.
Virus Genes ; 51(3): 408-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433951

RESUMO

Watermelon chlorotic stunt virus (WmCSV) and tomato leaf curl Palampur virus (ToLCPMV) are limiting factors for cucurbit production in south and southeastern Iran. ToLCPMV infects all cucurbit crops (except watermelons) whereas WmCSV is somewhat limited to watermelon, causing detrimental effects on fruit production. In a survey, we detected WmCSV in all watermelon growing farms in Fars province (southern Iran). Given that WmCSV and ToLCPMV are present in the same geographical location in Iran, we studied the interaction of two viruses. Co-infection using agroinfectious clones of WmCSV and ToLCPMV caused severe symptoms in watermelon and zucchini in comparison to symptoms observed from individual infections. Interestingly, inoculation of zucchini with WmCSV DNA-A and ToLCPMV DNA-B agroinfectious clones or vice versa produced a viable pseudo-recombinant and induced systemic symptoms. This demonstrates that replication-associated protein of DNA-A of each virus is able to bind to cis elements of the DNA-B molecules of another virus.


Assuntos
Begomovirus/genética , Begomovirus/patogenicidade , Citrullus , Cucurbita , Doenças das Plantas/virologia , Sequência de Bases , Coinfecção/virologia , DNA Viral/análise , DNA Viral/genética , Genoma Viral , Irã (Geográfico) , Dados de Sequência Molecular , Filogenia , Folhas de Planta/virologia , Reação em Cadeia da Polimerase , Recombinação Genética , Alinhamento de Sequência
7.
Arch Virol ; 158(2): 435-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23081676

RESUMO

Beet curly top Iran virus (BCTIV) is a divergent geminivirus with biological properties similar to those of curtoviruses; however, the virus is distinct from curtoviruses phylogenetically and in its genome organisation. The replication-associated protein is phylogenetically more closely related to those of mastreviruses than to those of curtoviruses whereas the capsid protein shares high amino acid sequence identity (77-83 %) with those of curtoviruses. The 17 BCTIV genomes from Iran share ~77 % pairwise nucleotide sequence identity with spinach curly top Arizona virus (SCTAV) from Arizona, USA, which was characterised recently. To demonstrate the infectivity of the monopartite BCTIV genome and to fulfil Koch's postulates, an infectious clone was constructed using a dimer of the full-length genome of an isolate from this study - BCTIV-[IR:Neg:B33P:Sug:08]. Agroinoculation with the cloned DNA resulted in the efficient infection of 74 % of sugar beet plants, which resulted in curly top symptoms. The curly top infection of agroinoculated plants was successfully transmitted to 80 % of healthy sugar beet plants by the natural BCTIV vector, Circulifer haematoceps. Since BCTIV and SCTAV share <62 % pairwise nucleotide sequence identity with all other geminiviruses and have unique genome architectures and properties, and since this is coupled with phylogenetic support at the full-genome level and that of it proteins, we propose that they should be re-classified as members of a new genus, "Becurtovirus", in the family Geminiviridae.


Assuntos
Geminiviridae/classificação , Geminiviridae/patogenicidade , Doenças das Plantas/virologia , Animais , Beta vulgaris/virologia , Clonagem Molecular , Vetores de Doenças , Geminiviridae/genética , Hemípteros/virologia , Irã (Geográfico) , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transformação Genética
8.
Virus Genes ; 46(2): 345-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23225113

RESUMO

Turnip curly top virus (TCTV) is a unique geminivirus that has recently been characterised as infecting turnips in Iran. The genome of TCTV shares <68 % pairwise identity with other geminiviruses and has a genome organisation similar to that of curtoviruses and topocuvirus. The replication-associated protein (Rep) bears the highest similarity to curtovirus Reps (48.5-69.0 %); however, in the case of the capsid protein (CP), the extent of similarity is only 39.5-44.5 %. We constructed an agroinfectious clone of TCTV and undertook host range studies on ten plant species; in three species (turnip, sugar beet and cowpea), we detected infection which presents curly top symptoms in turnip and sugar beet. The efficiency of TCTV infection in agroinoculated turnip plants was 71.7 %, and the infection was successfully transmitted to 80 % of the healthy turnip plants used in the insect transmission studies by Circulifer haematoceps under greenhouse conditions. We also determined the genome sequence of 14 new TCTV isolates from southern Iran isolated from turnips. We observed ~13 % diversity amongst all the TCTV isolates and found evidence of recombination in the CP- and Rep-coding regions of the genomes.


Assuntos
Geminiviridae/fisiologia , Variação Genética , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Beta vulgaris/virologia , Brassica napus/virologia , Brassica rapa/virologia , Fabaceae/virologia , Geminiviridae/classificação , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Dados de Sequência Molecular , Filogenia
9.
Virus Res ; 286: 198056, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593914

RESUMO

Fresh leaf vegetables are a significant part of the Persian food. Following a survey for identification of nanoviruses and geminivirus infecting leaf vegetables, a novel geminivirus was identified in a diseased parsley sample showing upward marginal leaf curling, marginal leaf yellowing, dwarfing and reduced leaf size in south-eastern Iran. The genome was identified through combination of rolling circle amplification (RCA) and high throughput sequencing (HTS) approaches. The full-length genome (2779 nts) of the cloned geminivirus, parsley yellow leaf curl virus (PYLCV), shares <66 % genome-wide pairwise identity with all other known geminiviruses. The PYLCV genome has six open reading frames (ORFs) and appears to be a hybrid with the virion sense encoded proteins being most similar to those of becurtoviruses and curtoviruses, whereas the complementary sense encoded proteins are most similar to those of begomoviruses. In comparison with other geminivirus encoded capsid proteins (CPs) and replication associated proteins (Reps), the CP of PYLCV shares <56 % amino acid pairwise identity whereas the Rep shares <73 % amino acid pairwise identity. To demonstrate the pathogenicity of the geminivirus, a partial dimer infectious clone was constructed and used to agro-infect parsley as well as Nicotiana benthamiana, turnip, radish and tomato. The agro-inoculation resulted in infection with symptoms in 83.7 % (82/98) of the tested plant. Based on the similarity of the CP encoded by PYLCV to those of becurtoviruses and curtoviruses, it is likely that leafhoppers may be the primary transmission vector.


Assuntos
Geminiviridae/classificação , Genoma Viral , Petroselinum/virologia , Filogenia , DNA Viral/genética , Geminiviridae/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Irã (Geográfico) , Fases de Leitura Aberta , Doenças das Plantas/virologia , Análise de Sequência de DNA , Nicotiana/virologia
10.
Virus Res ; 276: 197830, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31790775

RESUMO

Members of the family Nanoviridae are multi-component single-stranded DNA viruses that infect a variety of plant species. Using a combination of conventional PCR and high throughput sequencing-based approach, we identified a novel nanovirus infecting two symptomatic milk vetch plants (Astragalus myriacanthus Boiss.; family Fabaceae) showing marginal leaf chlorosis, little leaves and dwarfing in Iran. All eight segments (DNA-C, DNA-M, DNA-N, DNA-R, DNA-S, DNA-U1, DNA-U2 and DNAU4) were recovered and Sanger sequenced. The genome of this new nanovirus, hereby referred to as milk vetch chlorotic dwarf virus (MVCDV), shares 62.2-74.7 % nucleotide pairwise identity with the genomes of other nanoviruses. DNA-C, DNA-M, DNA-N, DNA-S components are most closely related to those of black medic leaf roll virus (BMLRV), sharing between 67.8-81.2 % identity. We also identified three nanoalphasatellites (family Alphasatellitidae) associated with the nanovirus which belong to species Faba bean necrotic yellows alphasatellite 1 (genus Subclovsatellite), Faba bean necrotic yellows alphasatellite 2 (genus Fabenesatellite) and Sophora yellow stunt alphasatellite 5 (genus Clostunsatellite). Given the significant diversity of Astragalus spp. in Iran, it is likely that there could be more nanoviruses circulating in these plants and that these may play a role in the spread of these nanovirus to cultivated fabaceous hosts.


Assuntos
Astrágalo/virologia , Nanovirus/genética , Nanovirus/isolamento & purificação , Doenças das Plantas/virologia , Necrose e Clorose das Plantas/virologia , DNA Viral/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Irã (Geográfico) , Nanovirus/classificação , Filogenia , Folhas de Planta/virologia , Análise de Sequência de DNA
11.
Arch Virol ; 154(6): 1015-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19424773

RESUMO

Tomato leaf curl disease (TLCD) and and tomato yellow leaf curl (TYLCD) is caused by a number of begomovirus species that collectively threaten tomato production worldwide. We report here that an ongoing TLCD and TYLCD epidemic in Iran is caused by variants of tomato leaf curl Palampur virus (ToLCPMV), a newly proposed begomovirus species previously only detected in India. Besides infecting tomatoes, we identified ToLCPMV as the causal agent of a cucurbit disease that has devastated greenhouse cucumber and melon farms in Jiroft, southeastern Iran. We found no convincing evidence that the ToLCPMV DNA-B sequences have been derived through inter-species recombination, however, all of the currently sampled ToLCPMV DNA-A sequences are descendents of a sequence that probably arose through recombination between a ToLCNDV isolate and a currently unsampled geminivirus species that falls outside the ToLCNDV-ToLCPMV cluster. The increasing incidence of ToLCPMV in different cultivated species throughout Iran may signal the emergence of a serious new threat to agricultural production throughout the Middle East.


Assuntos
Begomovirus/genética , Begomovirus/isolamento & purificação , Cucurbita/virologia , DNA Viral/química , Genoma Viral , Doenças das Plantas/virologia , DNA Viral/genética , Evolução Molecular , Irã (Geográfico) , Solanum lycopersicum/virologia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
12.
Plant Dis ; 93(1): 67-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30764258

RESUMO

A survey was conducted to determine the incidence of Cucumber mosaic virus (CMV), Beet curly top virus (BCTV), Tomato yellow leaf curl virus (TYLCV), Tomato chlorotic spot virus (TcSV), Potato virus Y (PVY), Potato virus S (PVS), Tomato spotted wilt virus (TSWV), Tomato ringspot virus (TRSV), Tomato aspermy virus (TAV), Arabis mosaic virus (ArMV), Tobacco streak virus (TSV), Tomato bushy stunt virus (TBSV), Tobacco mosaic virus (TMV), and Tomato mosaic virus (ToMV) on tomato (Solanum lycopersicum) in the major horticultural crop growing areas in the southeast and central regions of Iran. A total of 1,307 symptomatic leaf samples from fields and 603 samples from greenhouses were collected from January 2003 to July 2005 in five southeastern and central provinces of Iran. Samples of symptomatic plants were analyzed for virus infection by enzyme-linked immunosorbent assay (ELISA) using specific polyclonal antibodies. ArMV and CMV were the most frequently found viruses, accounting for 25.6 and 23.4%, respectively, of the collected samples. BCTV, TSWV, TMV, PVY, ToMV, and TYLCV were detected in 6.1, 5.8, 5.6, 5, 4.8, and 1.6% of the samples, respectively. TBSV, TAV, TSV, PVS, and TRSV were not detected in any of the samples tested. Double and triple infections involving different combination of viruses were found in 13.9 and 1.7% of samples, respectively. This is the first report of PVY and ArMV as viruses naturally infecting tomato in Iran. Infection of tomato plants with PVY and ArMV was confirmed. Six out of 20 plant species belonging to six genera, growing in tomato fields or in the nearby areas, were found infected with TSWV, TMV, PVY, and CMV.

13.
Virusdisease ; 30(4): 545-550, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31897417

RESUMO

In the last decade two mastreviruses, Wheat dwarf virus (WDV) and Oat dwarf virus (ODV) have been reported from cereal farms in Iran. In a survey, wild and cultivated hosts of these mastreviruses were studied during 2015 to 2017. Symptomatic small grain cereal samples and weed species were collected and assayed for WDV and/or ODV infection by PCR. While WDV which was detected in 139/284 (49%) of total symptomatic samples, low incidence (2%) was recorded for ODV which was detected only in slender wild oat (Avena barbata Pott ex Link) and red brome (Bromus rubens L.). In agroinfection studies, the clone of ODV infected common oat (A. sativa) and slender wild oat (A. barbata) with the low efficiency and did not infect wheat or barley. ODV was transmitted by the leafhopper Psammotettix alienus, from agroinfected common oat to healthy seedlings. The results show that, in contrast to WDV, ODV has a low incidence and a narrow host range in gramineous plants.

14.
Plant Dis ; 91(2): 159-163, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30780998

RESUMO

Greenhouse-grown cucurbit crops in several Iranian regions were surveyed for the incidence of Cucumber mosaic virus (CMV), Squash mosaic virus (SqMV), Papaya ring spot virus-type W (PRSV-W), Watermelon mosaic virus-2 (WMV-2), Zucchini yellow mosaic virus (ZYMV), Cucumber necrosis virus (CuNV) and Tomato spotted wilt virus (TSWV) from September 2002 to June 2004. In all, 1,304 random and 1,085 symptomatic leaf or fruit samples were collected. Samples were analyzed for virus infection by enzyme-linked immunosorbent assay. CMV and ZYMV were the viruses most frequently detected, accounting for 21.2 and 18% of the infected plants, respectively. WMV-2 was detected with 4.3% incidence in 15 regions and TSWV with 1.25% incidence only in 2 regions. CuNV, SqMV, and PRSV-W were not detected in any samples. Double and triple infections involving different combinations of CMV, ZYMV, WMV-2, and TSWV were noted in 117 and 4 samples, respectively. Natural infection of cucumber with TSWV and ZYMV is reported for the first time from Iran. Of 16 plant species from 14 genera, growing in or around greenhouse facilities, 6 were found infected with ZYMV, TSWV, WMV-2, and CMV and may act as reservoirs of the viruses. Four species are reported as new hosts of these viruses.

15.
Virus Res ; 235: 24-32, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28396284

RESUMO

Viruses in the genus Nanovirus of the family Nanoviridae generally have eight individually encapsidated circular genome components and have been predominantly found infecting Fabaceae plants in Europe, Australia, Africa and Asia. For over a decade Sophora alopecuroides L. (Fabaceae) plants have been observed across Iran displaying dwarfing, yellowing, stunted leaves and yellow vein banding. Using a high-throughput sequencing approach, sequences were identified within one such plant that had similarities to nanovirus genome components. From this plant, the nanovirus-like molecules DNA-R (n=4), DNA-C (n=2), DNA-S (n=1), DNA-M (n=1), DNA-N (n=1), DNA-U1 (n=1), DNA-U2 (n=1) and DNA-U4 (n=1) were amplified, cloned and sequenced. Other than for the DNA-R, these components share less than 71% identity with those of other known nanoviruses. The four DNA-R molecules were highly diverse, sharing only 65-71% identity with each other and 64-86% identity with those of other nanoviruses. In the S. alopecuroides plant 14 molecules sharing 57.7-84.6% identity with previously determined sequences of nanovirus-associated alphasatellites were also identified. Given the research activity in the nanovirus field during the last five years coupled with high-throughput sequence technologies, many more diverse nanoviruses and nanovirus-associated satellites are likely to be identified.


Assuntos
DNA Satélite/isolamento & purificação , Nanovirus/isolamento & purificação , Sophora/virologia , Clonagem Molecular , DNA Satélite/genética , Irã (Geográfico) , Nanovirus/genética , Análise de Sequência de DNA
16.
Virusdisease ; 25(1): 78-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24426313

RESUMO

A survey was carried out to determine the extent of Potato virus V (PVV) infection, together with other potyviruses, in Iran in both commercial and local potato varieties. We found a low incidence of PVV in commercial varieties compared to a local potato cultivar Zardi, in which we noted a PVV infection up to ~32.9 %. We determined the genomic sequence 9,812 nucleotides of one isolate (KER.LAL.P) from cultivar Agria and the 3'-terminal sequence including coat protein (CP) gene of four additional isolates from cultivar Zardi. The Iranian isolate PVV KER.LAL.P was found to share 91 % sequence identity with the Scottish isolate DV-42 (AJ243766) of PVV. The CP gene sequences of the PVV isolates from Iran shared 96.5 to 99.3 % pairwise nucleotide identity and they shared <97.5 % pairwise identity with the CP sequences of all other PVV isolates available in public databases. Our host studies indicated that the Iranian PVV isolate had a narrower host range and infected Nicotiana debneyi and N. glutinosa test plants. Within the commercial varieties of potato in Iran, we noted a significant amount of mixed potyvirus infection. This study is the first report of occurrence and complete genome of PVV in Iran.

17.
Virusdisease ; 25(3): 338-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674601

RESUMO

Six hundred and one symptomatic potato samples were collected from nine provinces in Iran. Screening by double-antibody sandwich enzyme linked immunosorbent assay using a potato virus X (PVX) together with a few potyviruses polyclonal antibodies, produced positive reactions in 4.3 % of samples against PVX. Based on symptoms on different test plant, the isolates were divided into two groups: the first groups causing blistering and malformation of leaves and the second showed mild mosaic and vein clearing in Nicotiana glutinosa. The almost complete nucleotide sequence of two isolates as a representative of severe and a mild isolates were determined. Genomes of two PVX Iranian isolates are identical to that of the most PVX isolates comprise 6435 nucleotides in length excluding 101 nucleotide in the 5' end of the genome and shares 94.8-96.7 % identities with European and Asian, and 77-96.1 % with American isolates. Furthermore, the 3'-terminal sequences, including the coat protein coding region of other 13 Iranian isolates were determined and compared with the GenBank sequences. Phylogenetic analysis of the cp gene of 13 Iranian isolates together all those available in public databases indicated that the 13 Iranian isolates all belong to low diversity clade I.

18.
Virus Res ; 152(1-2): 169-75, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20566344

RESUMO

From 2006 onwards turnip crops in Fars province, Iran, have been noted with unusual leaf curling and vein swelling symptoms which are characteristic of the leafhopper-transmitted viruses of the genus Curtovirus (family Geminiviridae). Rolling circle amplification was used to clone viruses from five turnip isolates exhibiting leaf curl symptoms. Analysis of the sequences showed them to have >93% sequence identity and to be distinct from all other geminiviruses previously characterised. Analysis of the sequence of this virus, for which we propose the name Turnip curly top virus (TCTV), showed it to have a genome arrangement in the complementary-sense similar to that of curtoviruses (consisting of four overlapping genes) but only two open reading frames in the virion-sense (the curtoviruses encode three). The complementary-sense genes are homologous to those of curtoviruses but show little sequence identity to their curtovirus homologs, with the exception of the product of the C4 open reading frame (ORF) which shows approximately 70.6% amino acid sequence identity to the C4 of the North American curtoviruses, Pepper curly top virus and Beet mild curly top virus. For curtoviruses the C4 protein is a symptom determinant, which likely explains the similarity of TCTV symptoms to those of curtoviruses. In the virion-sense the predicted product of the V2 ORF of TCTV shows no significant similarity with any proteins in the databases whereas the product of the V1 ORF (encoding the coat protein [CP] of geminiviruses) shows low levels of sequence identity to the CPs of curtoviruses. These findings show TCTV to be a highly divergent geminivirus with similarities to viruses of the genus curtovirus. The significance of these findings, particularly the taxonomic implications are discussed.


Assuntos
Brassica napus/virologia , Evolução Molecular , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Doenças das Plantas/virologia , Sequência de Bases , Geminiviridae/classificação , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
19.
Virus Genes ; 38(2): 311-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19112612

RESUMO

The incidence and severity of tomato leaf curl disease (TLCD) is increasing worldwide. Here we assess the diversity and distribution within tomato producing areas of Iran of begomoviruses that cause this disease. Tomato with typical TLCD symptoms and asymptomatic weeds were collected in 2005 and 2006 and tested for the presence of begomovirus DNA using polymerase chain reaction (PCR). Analysis of cloned and sequenced PCR products revealed that both mono- and bipartite begomoviruses are associated with TLCD in Iran. Furthermore, our results confirmed the symptomless infection with mono- and bipartite begomoviruses of two weed species, Chrozophora hierosolymitana Spreng (Euphobiaceae) and Herniaria sp. (Caryophyllaceae). Eighteen Iranian begomovirus isolates were classified into two major groups and two or three subgroups according to the 5'-proximal 200 nucleotides of the coat protein (CP) gene or the N-terminal 600 nucleotides of the Rep gene. Whereas most of the monopartite isolates showed closest similarity to tomato yellow leaf curl virus-Gezira (TYLCV-Ge), the three bipartite isolates were most similar to Tomato leaf curl New Delhi virus (ToLCNDV). Mixed mono- and a bipartite begomovirus infections were detected in both tomato and C. hierosolymitana. Our results indicate that the tomato producing areas in central, southern, and southeastern Iran are threatened by begomoviruses originating from both the Mediterranean basin and the Indian subcontinent.


Assuntos
Begomovirus/classificação , Begomovirus/isolamento & purificação , Variação Genética , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Begomovirus/genética , Caryophyllaceae/virologia , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Euphorbiaceae/virologia , Genótipo , Irã (Geográfico) , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Virais/genética
20.
Virus Genes ; 37(3): 304-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18712590

RESUMO

Watermelon mosaic virus (WMV) is one of the most important viruses that causes different symptoms in Cucurbitaceae. WMV is a potyvirus with a worldwide distribution, but occurs most commonly in temperate and Mediterranean regions. Cucurbit species grown in Yazd, Esfahan, West Azerbaijan, Hormozgan, and Kerman provinces were surveyed for the relative incidence of WMV in 2004-2005. A total of 757 symptomatic cucurbit and 31 weed species were collected and assayed for infection with WMV. Of 788 leaf samples from cucurbit and weed plants, 190 samples were positive by double antibody sandwich ELISA (DAS-ELISA) using specific polyclonal antibody. Among the weed species tested only colocynth (Citrullus colocynthis) was found to be infected with WMV. The coat protein (CP) gene from 18 representative isolates was PCR amplified, cloned, sequenced, and compared with the sequences available in GeneBank. Phylogenetic analysis using 778 nucleotide long sequences of the coat protein gene showed that these isolates fell into two; groups I and II. Only one isolates (KER.JI.1) was classified in the group II. This isolate had a wider host range and infected Nicotiana debneyii and Datura metel. None of the other 17 isolates could infect these two species. Members of group I were divided into three subgroups; A, B, and C. The subgroup I(B) appears to be a new subgroup comprising only of the Iranian isolates. Phylogenetic analysis based on 200 nucleotides coding for the N-terminal segment of the CP showed that all Iranian isolates except KER.JI.1 clustered with the previously reported WMV strains. All Iranian isolates had a DAG amino acid triplet which is involved in aphid transmissibility. This is the first report on sequence analysis of the nearly full-length CP cDNA clones of WMV isolates from Iran.


Assuntos
Cucurbitaceae/virologia , Variação Genética , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Proteínas do Capsídeo/genética , Clonagem Molecular , Irã (Geográfico) , Dados de Sequência Molecular , Filogenia , Potyvirus/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA