Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(39): 14661-14673, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37732724

RESUMO

Trace metals, as constituents of ambient air, can have impacts on human and environmental health. The Global Atmospheric Passive Sampling (GAPS) and GAPS Megacities (GAPS-MC) networks investigated trace metals in the air at 51 global locations by deploying polyurethane foam disk passive air samplers (PUF-PAS) for periods of 3-12 months. Aluminum and iron exhibited the highest concentrations in air (x̅ = 3400 and 4630 ng/m3, respectively), with notably elevated values at a rural site in Argentina thought to be impacted by resuspended soil. Urban sites had the highest levels of toxic Pb and Cd, with enrichment factors suggesting primarily anthropogenic influences. High levels of As at rural sites were also observed. Elevated trace metal concentrations in cities are associated with local emissions and higher PM2.5 and PM10 concentrations. Brake and tire wear-associated metals Sb, Cu, and Zn are significantly correlated and elevated at urban locations relative to those at background sites. These data demonstrate the versatility of PUF-PAS for measuring trace metals and other particle-associated pollutants in ambient air in a cost-effective and simple manner. The data presented here will serve as a global baseline for assessing future changes in ambient air associated with industrialization, urbanization, and population growth.

2.
Sci Total Environ ; 843: 157094, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779735

RESUMO

Chlorinated paraffins (CPs) are synthetic chemicals that are produced at high volumes and have a global presence. CPs are generally divided into three groups based on their carbon chain lengths: short-chain CPs (SCCPs, C10-13), medium-chain CPs (MCCPs, C14-17), and long-chain CPs (LCCPs, C≥18). SCCPs have been formally recognized as persistent organic pollutants (POPs) and have been listed under the Stockholm Convention on POPs. Concerns about increases in MCCP and LCCP production as replacements for SCCP products are rising, given their similar properties to SCCPs and the fact that they remain relatively understudied with only a few reported measurements in air. Passive air samplers with polyurethane foam disks (PUF-PAS), which have been successfully applied to SCCPs, provide an opportunity to expand the existing body of data on MCCP and LCCP air concentrations, as they are inexpensive and require little maintenance. The uptake of MCCPs and LCCPs by PUF disk samplers is characterized in this paper based on newly derived PUF-air partitioning coefficients using COSMOtherm. The ability of PUF disk samplers to capture both gas-phase and particle fractions is important because MCCPs and LCCPs have reduced volatility compared to SCCPs and therefore are mainly associated with particulate matter in air. In addition, due to their use as additives in plastics and rubber products, they are associated with micro- and nanoplastics, which are considered to be potential vectors for the long-range atmospheric transport (LRAT) of these chemicals. The review has highlighted other limitations to reporting of MCCPs and LCCPs in air, including the lack of suitable analytical standards and the requirement for advanced analytical methods to detect and resolve these complex mixtures. Overall, this review indicates that further research is needed in many areas for medium- and long-chain chlorinated paraffins in order to better understand their occurrence, transport and fate in air.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , China , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Hidrocarbonetos Clorados/análise , Parafina/análise , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA