Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Bioconjug Chem ; 29(3): 795-803, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29283548

RESUMO

In the field of cancer immunotherapy, an original approach consists of using granulocyte colony-stimulating factor (G-CSF) to target and activate neutrophils, cells of the innate immune system. G-CSF is a leukocyte stimulating molecule which is commonly used in cancer patients to prevent or reduce neutropenia. We focused herein on developing a G-CSF nanocarrier which could increase the in vivo circulation time of this cytokine, keeping it active for targeting the spleen, an important reservoir of neutrophils. G-CSF-functionalized silica and gold nanoparticles were developed. Silica nanoparticles of 50 nm diameter were functionalized by a solid phase synthesis approach. The technology enabled us to incorporate multiple functionalities on the surface such as a PEG as hydrophilic polymer, DTPA as 111In chelating agent and G-CSF. The gold nanocarrier consisted of nanoparticles of 2-3 nm diameter elaborated with DTPA groups on the surface and functionalized with G-CSF. We studied the particle biodistribution in mice with special attention to organs involved in the immune system. The two nanocarriers with similar functionalization of surface showed different pathways in mice, probably due to their difference in size. Considering the biodistribution after G-CSF functionalization, we confirmed that the protein was capable of modifying the pharmacokinetics by increasing the nanocarrier concentration in the spleen, a reservoir of G-CSF receptor expressing cells.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Portadores de Fármacos/química , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Nanopartículas/química , Adjuvantes Imunológicos/química , Animais , Sistemas de Liberação de Medicamentos , Ouro/química , Fator Estimulador de Colônias de Granulócitos/química , Camundongos , Nanopartículas/ultraestrutura , Dióxido de Silício/química , Baço/imunologia , Distribuição Tecidual
2.
Bioconjug Chem ; 29(3): 804-812, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29283559

RESUMO

The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Linfoma/tratamento farmacológico , Nanopartículas/química , Rituximab/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Linfoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Rituximab/farmacocinética , Rituximab/farmacologia , Rituximab/uso terapêutico , Dióxido de Silício/química , Distribuição Tecidual
3.
Breast Cancer Res ; 17: 57, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908175

RESUMO

INTRODUCTION: Trastuzumab has been used in the treatment of human epidermal growth factor receptor 2 (HER2)-expressing breast cancer, but its efficacy is limited by de novo or acquired resistance. Although many mechanisms have been proposed to explain resistance to trastuzumab, little is known concerning the role of the tumor microenvironment. Given the importance of antibody-dependent cellular cytotoxicity (ADCC) in the antitumor effect of trastuzumab and the abundance of adipose tissue in the breast, we investigated the impact of adipocytes on ADCC. METHODS: We set up a coculture system to study the effect of adipocytes on ADCC in vitro. The results were validated in vivo in a mouse xenograft model. RESULTS: We found that adipocytes, as well as preadipocytes, inhibited trastuzumab-mediated ADCC in HER2-expressing breast cancer cells via the secretion of soluble factors. The inhibition of ADCC was not due to titration or degradation of the antibody. We found that adipose cells decreased the secretion of interferon-γ by natural killer cells, but did not alter natural killer cells' cytotoxicity. Preincubation of breast cancer cells with the conditioned medium derived from adipocytes reduced the sensitivity of cancer cells to ADCC. Using a transcriptomic approach, we found that cancer cells undergo major modifications when exposed to adipocyte-conditioned medium. Importantly, breast tumors grafted next to lipomas displayed resistance to trastuzumab in mouse xenograft models. CONCLUSIONS: Collectively, our findings underline the importance of adipose tissue in the resistance to trastuzumab and suggest that approaches targeting the adipocyte-cancer cell crosstalk may help sensitize cancer cells to trastuzumab-based therapy.


Assuntos
Adipócitos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Trastuzumab/imunologia , Trastuzumab/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Meios de Cultivo Condicionados , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Mamárias Animais , Camundongos , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Immunol ; 14: 1066402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223101

RESUMO

Bacterial lipopolysaccharides (LPS) are potent innate immunostimulants targeting the Toll-like receptor 4 (TLR4), an attractive and validated target for immunostimulation in cancer therapy. Although LPS possess anti-tumor activity, toxicity issues prevent their systemic administration at effective doses in humans. We first demonstrated that LPS formulated in liposomes preserved a potent antitumor activity per se upon systemic administration in syngeneic models, and significantly enhance the antitumor activity of the anti-CD20 antibody rituximab in mice xenografted with the human RL lymphoma model. Liposomal encapsulation also allowed a 2-fold reduction in the induction of pro-inflammatory cytokines by LPS. Mice receiving an intravenous administration demonstrated a significant increase of neutrophils, monocytes and macrophages at the tumor site as well as an increase of macrophages in spleen. Further, we chemically detoxified LPS to obtain MP-LPS that was associated with a 200-fold decrease in the induction of proinflammatory cytokines. When encapsulated in a clinically approved liposomal formulation, toxicity, notably pyrogenicity (10-fold), was limited while the antitumor activity and immunoadjuvant effect were maintained. This improved tolerance profile of liposomal MP-LPS was associated with the preferential activation of the TLR4-TRIF pathway. Finally, in vitro studies demonstrated that stimulation with encapsulated MP-LPS reversed the polarization of M2 macrophages towards an M1 phenotype, and a phase 1 trial in healthy dogs validated its tolerance upon systemic administration up to very high doses (10µg/kg). Altogether, our results demonstrate the strong therapeutic potential of MPLPS formulated in liposomes as a systemically active anticancer agent, supporting its evaluation in patients with cancer.


Assuntos
Adjuvantes Imunológicos , Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Cães , Humanos , Camundongos , Citocinas , Lipossomos , Receptor 4 Toll-Like/agonistas
5.
Front Immunol ; 13: 1011943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703964

RESUMO

Introduction: The use of tumor subcutaneous (SC) implantations rather than orthotopic sites is likely to induce a significant bias, in particular, in the field of immunotherapy. Methods: In this study, we developed and characterized MC38 models, implanted subcutaneously and orthotopically, which were either sensitive or rendered resistant to anti-PD1 therapy. We characterized the tumor immune infiltrate by flow cytometry at baseline and after treatment. Results and Discussion: Our results demonstrate several differences between SC and orthotopic models at basal state, which tend to become similar after therapy. These results emphasize the need to take into account tumor implantation sites when performing preclinical studies with immunotherapeutic agents.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Camundongos , Modelos Animais de Doenças , Imunoterapia/métodos , Neoplasias/terapia , Inibidores de Checkpoint Imunológico/farmacologia
6.
Leuk Lymphoma ; 63(2): 395-403, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34585999

RESUMO

Deleted in colorectal cancer (DCC) and uncoordinated-5 (UNC5) receptors, play a key role in tumor progression of several solid tumors by inducing apoptosis when unbound to their ligand netrin-1. Netrin 1 is currently being evaluated as a therapeutic target. These receptors, known as dependence receptors, and their ligands, have not yet been extensively explored in hematological malignancies. Here, we performed a screening of various human myeloma cell lines and bone marrow samples from multiple myeloma patients for netrin-1 and its receptors to determine the expression of netrin 1 and its receptors in multiple myeloma as well as to assess the potential anti-myeloma activity of a novel anti-netrin-1 treatment (NP137). Our results showed heterogeneous expression of netrin-1 and its receptors DCC and UNC5H2(B) in six human myeloma lines. Additionally, immunohistochemistry and flow cytometry showed expression of these molecules in a majority of myeloma patient samples. In vitro NP137 did not induce apoptosis of myeloma cell lines yet enhanced the cytotoxicity of bortezomib and dexamethasone. In vivo, NP137 treatment of SCID mice with established RPMI8226 myeloma tumors led to a reduction of tumor size compared to controls. Ex vivo, NP137 lowered the plasma cells percentage in bone marrow aspirates in a fraction of the patient samples analyzed. These results suggest that netrin signaling could constitute a novel therapeutic target in multiple myeloma.


Assuntos
Mieloma Múltiplo , Netrina-1 , Animais , Linhagem Celular Tumoral , Receptor DCC , Humanos , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Fatores de Crescimento Neural/metabolismo , Receptores de Netrina , Netrina-1/biossíntese , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Cancer Immunol Res ; 10(8): 1013-1027, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35679518

RESUMO

Antibodies targeting PD-1 and PD-L1 have produced durable responses in a subset of patients with cancer. However, a majority of these patients will ultimately relapse due to acquired resistance. To explore the underlying mechanisms of this secondary resistance, we developed five syngeneic murine tumor variants with acquired resistance to anti-PD-1 and/or PD-L1 antibodies in vivo. Resistant in vivo models were obtained by serial treatment/reimplantation cycles of the MC38 colorectal, MB49 and MBT2 bladder, and RENCA kidney and TyrNras melanoma models. Tumor immune infiltrates were characterized for wild type and resistant tumors using spectral cytometry and their molecular alterations analyzed using RNA sequencing analyses. Alterations in the tumor immune microenvironment were strongly heterogeneous among resistant models, involving select lymphoid and/or myeloid subpopulations. Molecular alterations in resistant models included previously identified pathways as well as novel candidate genes found to be deregulated in several resistant models. Among these, Serpinf1, coding for pigment epithelial-derived factor (PEDF) was further explored in the MC38 and the MBT2 models. Overexpression of Serpinf1 induced resistance to anti-PD-1 antibodies in the MC38 model, whereas knockdown of Serpinf1 sensitized this model as well as the primarily resistant MBT2 model. Serpinf1 overexpression was associated with increased production of free fatty acids and reduced activation of CD8+ cells, while orlistat, a compound that reduces the production of free fatty acids, reversed resistance to anti-PD-1 therapy. Our results suggest that a panel of syngeneic resistant models constitutes a useful tool to model the heterogeneity of resistance mechanisms encountered in the clinic.


Assuntos
Antígeno B7-H1 , Ácidos Graxos não Esterificados , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Humanos , Camundongos , Recidiva Local de Neoplasia , Microambiente Tumoral
8.
Front Immunol ; 9: 2100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356816

RESUMO

In spite of impressive response rates in multiple cancer types, immune checkpoint inhibitors (ICIs) are active in only a minority of patients. Alternative strategies currently aim to combine immunotherapies with conventional agents such as cytotoxic chemotherapies. Here, we performed a study of PD-1 or PDL-1 blockade in combination with reference chemotherapies in four fully immunocompetent mouse models of cancer. We analyzed both the in vivo antitumor response, and the tumor immune infiltrate 4 days after the first treatment. in vivo tumor growth experiments revealed variable responsiveness to ICIs between models. We observed enhanced antitumor effects of the combination of immunotherapy with chemotherapy in the MC38 colon and MB49 bladder models, a lack of response in the 4T1 breast model, and an inhibition of ICIs activity in the MBT-2 bladder model. Flow cytometry analysis of tumor samples showed significant differences in all models between untreated and treated mice. At baseline, all the tumor models studied were predominantly infiltrated with cells harboring an immunosuppressive phenotype. Early alterations of the tumor immune infiltrate after treatment were found to be highly variable. We found that the balance between effector cells and immunosuppressive cells in the tumor microenvironment could be altered with some treatment combinations, but this effect was not always correlated with an impact on in vivo tumor growth. These results show that the combination of cytotoxic chemotherapy with ICIs may result in enhanced, similar or reduced antitumor activity, in a model- and regimen-dependent fashion. The present investigations should help to select appropriate combination regimens for ICIs.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo , Proteínas de Neoplasias , Neoplasias Experimentais , Receptor de Morte Celular Programada 1 , Neoplasias da Bexiga Urinária , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia
9.
Eur J Med Chem ; 158: 405-413, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30237123

RESUMO

Phosphatidylinositide 3-kinases (PI3Ks) are widely expressed enzymes involved in membrane signalization pathways. Attempts to administer inhibitors with broad activity against different isoforms have failed due to toxicity. Conversely the PI3Kδ isoform is much more selectively expressed, enabling therapeutic targeting of this isoform. Of particular interest PI3Kδ is expressed in human basophils and its inhibition has been shown to reduce anti-IgE induced basophil degranulation, suggesting that PI3Kδ inhibitors could be useful as anti-allergy drugs. Herein, we report for the first time the activity of compounds derived from chalcone scaffolds as inhibitors of normal human basophil degranulation and identified the most active compound with anti-PI3Kδ properties that was investigated in preclinical models. Compound 18, namely 1-[2-hydroxy-4,6-dimethoxy-3-(N-methylpiperidin-4-yl)phenyl]-3-(2,4,6-trimethoxyphenyl)-prop-2-en-1-one, was found to inhibit normal human basophil degranulation in a dose-dependent manner. In a murine model of ovalbumin-induced asthma, compound 18 was shown to reduce expiratory pressure while its impact on the inflammatory infiltrate in alveolar lavage and total lung was dependent on the route of administration. In a DNFB-induced model of atopic dermatitis compound 18 administered systemically proved to be as potent as topical betamethasone. These results support the anti-atopic and allergic properties of the title compound and warrant further clinical development.


Assuntos
Basófilos/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Dermatite Atópica/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Basófilos/fisiologia , Degranulação Celular/efeitos dos fármacos , Chalconas/uso terapêutico , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico
10.
Oncotarget ; 8(42): 72818-72834, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069828

RESUMO

Innate immune cells constitute a substantial proportion of the cells within the tumor microenvironment. Besides the contribution of the microenvironment to tumor proliferation and survival, there is direct evidence that interactions between tumor cells and their microenvironment alter sensitivity to anti-cancer agents. Neutrophils, a key player in the innate immune system, have been less studied than many other immune cells regarding their impact on cancer cell response to anti-cancer agents. In our 2D and 3D coculture systems, human neutrophils and differentiated HL60 cells attenuated the sensitivity of various lymphoma cell lines to several anti-cancer agents, including targeted therapies. Neutrophil-induced protection was dependent on cell-cell interaction between CD11b and ICAM-1 expressed by neutrophils and B cells, respectively and was shown to be Mcl-1-dependent. The protective effect of neutrophils was validated in vivo using immune-compromised mice inoculated with human NHL with our without neutrophils then followed by treatment with chemotherapy. Similar findings were made on primary cells purified from patients with chronic lymphocytic leukemia, treated with fludarabine or targeted agents in the presence of autologous neutrophils. In a clinical study, patients with non-Hodgkin's lymphoma with increased neutrophil counts displayed a reduced response rate to therapy. These findings reveal a novel protective mechanism of neoplastic B cells involving innate immune cells which could be pharmacologically targeted to enhance the antitumor effect of therapy.

11.
Mol Cancer Ther ; 15(6): 1238-47, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26988998

RESUMO

Therapeutic mAbs exert antitumor activity through various mechanisms, including apoptotic signalization, complement-dependent cytotoxicity, and antibody-dependent cellular cytotoxicity (ADCC) or phagocytosis (ADCP). G-CSF and GM-CSF have been reported to increase the activity of antibodies in preclinical models and in clinical trials. To determine the potential role of pegfilgrastim as an enhancer of anticancer antibodies, we performed a comparative study of filgrastim and pegfilgrastim. We found that pegfilgrastim was significantly more potent than filgrastim in murine xenograft models treated with mAbs. This was observed with rituximab in CD20(+) models and with trastuzumab in HER2(+) models. Stimulation with pegfilgrastim was associated with significant enhancement of leukocyte content in spleen as well as mobilization of activated monocytes/granulocytes from the spleen to the tumor bed. These results suggest that pegfilgrastim could constitute a potent adjuvant for immunotherapy with mAbs possessing ADCC/ADCP properties. Mol Cancer Ther; 15(6); 1238-47. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Filgrastim/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Filgrastim/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Leucócitos/imunologia , Camundongos , Polietilenoglicóis , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Rituximab/administração & dosagem , Rituximab/farmacologia , Baço/efeitos dos fármacos , Baço/imunologia , Trastuzumab/administração & dosagem , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 10(8): e0134247, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26274324

RESUMO

Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.


Assuntos
Técnicas de Transferência de Genes/instrumentação , Sonicação/instrumentação , Transfecção/instrumentação , Ultrassom/instrumentação , Linhagem Celular Tumoral , Sobrevivência Celular , Células HL-60 , Humanos , Técnicas In Vitro , Células Jurkat , Leucemia/diagnóstico por imagem , Leucemia/genética , Linfoma/diagnóstico por imagem , Linfoma/genética , Sonicação/métodos , Transfecção/métodos , Ultrassom/métodos , Ultrassonografia
13.
MAbs ; 7(1): 192-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25523586

RESUMO

Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antineoplásicos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neutrófilos/imunologia , Fagocitose/efeitos dos fármacos , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos SCID , Fagocitose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA