Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262915

RESUMO

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Assuntos
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Glycine max
2.
Genetica ; 151(3): 241-249, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37014491

RESUMO

Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified. The phylogenetic analysis divided the identified proteins into five major clusters and following the clustering pattern of the functionally characterized proteins, functions of the transporters in each cluster were predicted. Amino acid sequences, exon-intron structure, motif details and subcellular localization pattern for all the 401 proteins are described. The custom designed repeat masking libraries generated for each of these genomes, which will be of extensive use for the researchers worldwide, are also provided in this paper. This is the first study on the MATE genes in mangroves and the results provide comprehensive information on the molecular mechanisms enabling the survival of mangroves under hostile conditions.


Assuntos
Avicennia , Filogenia , Avicennia/genética , Avicennia/metabolismo , Sequência de Aminoácidos , Éxons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Mol Biol Rep ; 50(2): 1125-1132, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401706

RESUMO

BACKGROUND: Even though the bitter gourd hybrids are shown to have significant heterosis for many of the economic traits, processes such as manual bagging and hand pollination make the hybrid seed production labour-intensive. Use of gynoecious line as female parent makes hybrid seed production more economical. This work was performed with the objective to identify the candidate gene based molecular markers for gynoecy in bitter gourd. METHODS AND RESULTS: Seven putative genes for flowering and sex expression, isolated from the monoecious (MC-136) and gynoecious (KAU-MCGy-101) bitter gourd accessions, were sequence characterized. MADS-box transcription factor genes AG6 and McAG2 had nucleotide polymorphisms at five sites each and were potential candidates for marker development. An In/Del polymorphism of 48 bp ([TC]24) in AG6 gene was used to develop an SSR marker and a transition mutation of [A/G] in this gene was used to develop a set of SNP markers. These markers have developed distinct polymorphism between the monoecious and gynoecious genotypes and were found suited for the marker assisted selection. CONCLUSIONS: MADS box transcription factor genes AG6 and McAG2 are identified as candidates for sex expression in bitter gourd. Based on the InDels and transition in the intronic region of AG6, SSR marker BGAG6 and an SNP marker set segregating with the sex forms were developed. The markers have been validated using four other monoecious lines and are routinely used in our bitter gourd hybrid seed production programmes.


Assuntos
Momordica charantia , Momordica charantia/genética , Polimorfismo Genético , Genótipo , Fatores de Transcrição/genética
4.
J Plant Biochem Biotechnol ; : 1-16, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36685987

RESUMO

Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene (Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthesis, specifically the KAT2 gene which is otherwise thought to be involved mainly in ß-oxidation. The results of the present investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering in ginger for large-scale production of gingerols. Supplementary Information: The online version contains supplementary material available at 10.1007/s13562-022-00825-x.

5.
Genetica ; 150(1): 77-85, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34822037

RESUMO

Relatively large number of bitter melon microsatellite markers have been reported; however, only few resulted in successful PCR amplification and a small fraction shown polymorphisms. This limited chance of recovering polymorphic markers makes the primer screening a cost-demanding process. To test the hypothesis that microsatellites with longer motifs as well as shorter motifs repeated substantially shall have better prospects to be polymorphic, we performed a genome-wide microsatellite mining. We selected a sample of genome-wide microsatellites with prescribed motif lengths or satisfying a target repeat number, which were considered potentially-hyper variable, for primer designing and validation. Seventy five microsatellites satisfying these criteria were identified, of which 69 were validated through successful PCR amplification. Among them, 40 (53.33% of the markers identified) were polymorphic. This result showed a significantly higher success compared to our initial results of 51 (20.64%) polymorphic markers out of the 188 amplified when 247 previously reported markers were screened. The screening of two cultivars revealed that markers were efficient to identify up to three alleles. The characterization of these 69 new markers with 247 markers previously reported showed that di-nucleotide motifs were most abundant, followed by tri- and tetra-nucleotide motifs. TC motif markers were most polymorphic (12.08%) followed by AG and CT motifs (both 9.89%). Similarly, AGA (6.59%) and TATT (3.29%) were most polymorphic among the tri- and tetra-nucleotide motifs. These 69 hypervariable microsatellite markers along with 188 markers initially validated in this study shall be useful for phylogenetic analyses, studies of linkage, QTL, and association mapping in bitter melon.


Assuntos
Momordica charantia , Alelos , Ligação Genética , Genoma de Planta , Repetições de Microssatélites , Momordica charantia/genética , Filogenia
6.
Mol Biol Rep ; 49(4): 3149-3155, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35084629

RESUMO

BACKGROUND: The aromatic rice cultivars sometimes show variation in aroma when they are grown in regions other than their normal traditional growing regions. An early maturing selection from a Kerala aromatic local landrace with short grains, named 'Biriyanicheera', when grown in normal tropical conditions was sufficiently fragrant. The present study focused on the analysis of aroma in 'Biriyanicheera' rice genotype through molecular methods. METHODS AND RESULTS: The seeds of two aromatic rice varieties viz., Biriyanicheera and Gandhakasala (aromatic check) along with one non-aromatic rice variety Triveni (control) were used for the study. The BADH2 gene was amplified in all the three rice varieties. Upon sequencing the amplified PCR products of genomic DNA, the mutation in BADH2 gene was detected. The sequencing results of aromatic rice varieties revealed the presence of 8 base pair mutation in exon 7 in Biriyanicheera and Gandhakasaala, whereas this mutation was absent in the non-aromatic variety Triveni. CONCLUSIONS: Aroma production in Biriyanicheera variety is observed to be due to the similar mutation in BADH2 gene as that of the popular scented rice Basmati.


Assuntos
Oryza , Éxons , Genótipo , Mutação , Odorantes/análise , Oryza/genética
7.
Curr Genomics ; 23(1): 41-49, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35814938

RESUMO

Background: Even though miRNAs play vital roles in developmental biology by regulating the translation of mRNAs, they are poorly studied in oomycetes, especially in the plant pathogen Phytophthora. Objective: The study aimed to predict and identify the putative miRNAs and their targets in Phytophthora infestans and Phytophthora cinnamomi. Methods: The homology-based comparative method was used to identify the unique miRNA sequences in P. infestans and P. cinnamomi with 148,689 EST and TSA sequences of these species. Secondary structure prediction of sRNAs for the 76 resultant sequences has been performed with the MFOLD tool, and their targets were predicted using psRNATarget. Results: Novel miRNAs, miR-8210 and miR-4968, were predicted from P. infestans and P. cinnamomi, respectively, along with their structural features. The newly identified miRNAs were identified to play important roles in gene regulation, with few of their target genes predicted as transcription factors, tumor suppressor genes, stress-responsive genes, DNA repair genes, etc. Conclusion: The miRNAs and their targets identified have opened new interference and editing targets for the development of Phytophthora resistant crop varieties.

8.
Plant Dis ; 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34340565

RESUMO

Symptoms of suspected phytoplasma infection were observed in cauliflower (Brassica oleracea var. botrytis) (cultivar NS60N) at Integrated Farming System Research Station, Trivandrum, Kerala, India (08o28'28"N, 76o57'47"E) in April-2021. The disease incidence was recorded up to 10% in different fields. The disease manifested as stunting, phyllody, floral malformation and flattening of stem (Fig.1A,B). Ten symptomatic and five asymptomatic plants were assayed for the presence of phytoplasma using nested PCR assays performed with P1/P7 and R16F2n/R16R2 primer pairs for 16S rRNA gene and SecAfor1/ SecArev3 and SecAfor2/ SecArev3 for secA gene (Deng and Hiruki 1991; Gundersen and Lee 1996; Hodgetts et al. 2008). The expected amplicons of ~1.25 kb and ~480 bp were consistently amplified in all the symptomatic cauliflower samples with the phytoplasma specific universal 16S rRNA and secA gene specific primers. Nested PCR products (~1.2 kb and 480 bp) amplified from cauliflower was cloned in EcoRI restriction sites of pGEM-T Easy vector (Promega, USA). The cloned nested PCR products were directly sequenced (16S rRNA gene: Acc. Nos. MZ196223, MZ196224; secA gene: MZ215721, MZ215722) in both forward and reverse directions which showed 99.77% sequence identity with Candidatus Phytoplasma cynodontis reference strain (Acc. No. AJ550984). Further analyses of the 16S rRNA and secA genes based phylogenetic tree (Fig. 2A and B) and the iPhyClassifier-based virtual RFLP analysis of 16Sr RNA gene study demonstrated that the phytoplasma-associated with cauliflower phyllody & flat stem disease (CaPP) belonged to 16SrXIV-A subgroup with a similarity coefficient of 1.0. No amplicon was observed from any of the asymptomatic cauliflower plants with the specific tested primers of both the genes. Earlier association of 16SrXV-A subgroup (Candidatus Phytoplasma brasiliense) and 16Sr III-J subgroup in Brazil (Canale and Badendo, 2013; Rappussi et al. 2012), 16SrII-A (Candidatus Phytoplasma aurantifolia) subgroup in China (Cai et al. 2016) and 16SrVI-A (Candidatus Phytoplasma trifolii) subgroup in Iran (Salehi 2007) were reported in cauliflower. Another species of cabbage, Brassica oleracea var. capitata L. was reported as host of Ca. P. trifloii (16Sr VI-D subgroup) from north India (Gopala et al. 2018). To our knowledge, this is the first report of a 'Candidatus Phytoplasma cynodontis', 16SrXIV-A subgroup related phytoplasma strain associated with cauliflower phyllody and flat stem in the world. The results described in this report confirm that the 16SrXIV-A phytoplasma, a widely distributed strain associated with sugarcane, wheat, grasses, sapota and many ornamentals in India (Rao 2021), has also infected cauliflower. This is not only the first instance of cauliflower phyllody disease found in India, but also the first instance of CaPP disease caused by 16SrXIV-A subgroup phytoplasma worldwide. This report has epidemiological significance and needs immediate attention, as cauliflower is the one of the most common vegetable crop grown all over India.

9.
Genome ; 62(9): 571-584, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31283888

RESUMO

Silverleaf whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most notorious invasive insect pests, infesting more than 900 species of plants and spreading more than 200 viral diseases. This polyphagous agricultural pest harbours diverse bacterial communities in its gut, which perform multiple functions in whiteflies, including nutrient provisioning, amino acid biosynthesis, and virus transmission. The present exploratory study compares the bacterial communities associated with silverleaf whitefly infesting cassava, also known as cassava whitefly, collected from two different zones (zone P: plains; zone H: high ranges), from Kerala, India, using next-generation sequencing of 16S rDNA. The data sets for these two regions consisted of 1 321 906 and 690 661 high-quality paired-end sequences with mean length of 150 bp. Highly diverse bacterial communities were present in the sample, containing approximately 3513 operational taxonomic units (OTUs). Sequence analysis showed a marked difference in the relative abundance of bacteria in the populations. A total of 16 bacterial phyla, 27 classes, 56 orders, 91 families, 236 genera, and 409 species were identified from the P population, against 16, 31, 60, 88, 225, and 355, respectively, in the H population. Arsenophonus sp. (Enterobacteriaceae), which is important for virus transmission by whiteflies, was relatively abundant in the P population, whereas in the H population Bacillus sp. was the most dominant group. The association of whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as virus transmission, host range, insecticide resistance, and speciation.


Assuntos
Bactérias/classificação , Hemípteros/microbiologia , Manihot/parasitologia , Simbiose , Animais , Bactérias/isolamento & purificação , DNA Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Índia , Tipagem Molecular
10.
J Vector Borne Dis ; 56(2): 111-121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31397386

RESUMO

BACKGROUND & OBJECTIVES: Oral administration of tender leaf extract of Glycosmis pentaphylla is traditionally known to prevent the chikungunya virus infection. Even with wide usage, the antiviral components in this plant are neither identified nor characterized. This study was carried out with the objectives of profiling the phytocompounds in this plant through LC-MS/MS and to identify the active antiviral constituents and their drug-likeliness through molecular docking. METHODS: Phytocompounds were extracted hydro-alcoholically from powdered plant parts and analyzed using LC-MS/MS. Based on mass-to-charge ratio from LC-MS/MS, compounds were identified and used as ligands for molecular docking against chikungunya target proteins. The active principles were subjected to ADME/T analysis to verify their drug-likeliness. RESULTS: The docking results and ADME/T evaluation showed that the compounds, isovaleric acid and avicequinone- C have good interaction with the protein targets and hence could be the antiviral principles of the selected plant. These compounds presented acceptable drug properties and hence could be carried forward to in vivo studies for drug development. INTERPRETATION & CONCLUSION: The antiviral properties of G. pentaphylla are known since time-immemorial. This study revealed the probable interactions after the oral administration of tender leaves of Glycosmis in preventing the chikungunya virus infection and paves the path for designing future plant-based drugs.


Assuntos
Vírus Chikungunya/efeitos dos fármacos , Hemiterpenos/farmacologia , Ácidos Pentanoicos/farmacologia , Extratos Vegetais/farmacologia , Quinonas/farmacologia , Rutaceae/química , Administração Oral , Descoberta de Drogas , Simulação de Acoplamento Molecular , Folhas de Planta/química
11.
Mol Biol Res Commun ; 13(3): 155-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915458

RESUMO

Multidrug and Toxic Compound Extrusion (MATE) proteins are responsible for the transport of a wide range of metabolites out of plant cells. This helps to protect the cells from toxins and other harmful compounds. MATE proteins also play a role in plant development, by regulating the transport of hormones and other signalling molecules. They transport a wide variety of substances, including organic acids, plant hormones, flavonoids, alkaloids, terpenes and other secondary metabolites. MATE proteins are thought to play similar roles in Coriander, in addition to stress responses. The MATE genes in the coriander genome have been identified and characterized. Detailed genome homology search and domain identification analysis have identified 91 MATE proteins in the genome assembly of coriander. A phylogenetic analysis of the identified proteins divided them into five major clades. The functions of the transporters in each cluster were predicted based on the clustering pattern of the functionally characterized proteins. The amino acid sequences, exon-intron structures and motif details of all the 91 proteins are identified and described. This is the first work on the MATE transporters in coriander and the results deliver clues for the molecular mechanisms behind the stress responses and secondary metabolite transport in coriander.

12.
J Forensic Sci ; 69(2): 698-701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38066716

RESUMO

Electrocution deaths are mostly accidental. However, reconstruction of events in unusual electrocution death is challenging. This article reports an accidental death due to electrocution in a highly unusual circumstance, in which a truck driver reversing his vehicle was electrocuted when his truck inadvertently touched an overhead high-voltage wire. The electric injury marks were present over the sole of the right foot. The scene investigation revealed that the high-voltage wire was loose and was below the level of the prescribed height. The truck was passing over an elevated area made up of dirt and stone. The interior of the cabin of the truck revealed a few non-insulated metallic areas over the floor of the truck, between the accelerator and the brake, which were attributed as the sources of entry of electricity into the body. The electric injury marks were different than those usually seen in high-voltage electrocution as there was an intermediate object (truck) involved, and the contact period between the truck and the electric wire was minimal. This fatality was attributed to the non-proper insulation of the interior of the truck, the negligent driving of the truck driver over the elevated surface, and the loose high-voltage wire without proper maintenance.


Assuntos
Traumatismos por Eletricidade , Caminhoneiros , Humanos , Eletricidade , Acidentes , Veículos Automotores
13.
Cureus ; 16(5): e59953, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854267

RESUMO

BACKGROUND AND AIM: Oral squamous cell carcinoma (OSCC) is among the leading top three cancers in India. However, recent literature has shown an increase in the rise of oral cancer in younger individuals without any history of tobacco-related habits. Chronic mucosal irritation (CMI) has been noted to have a substantial impact on the development and etiology of OSCC. With the shift in the trend, it is imperative to observe and monitor alterations associated with its etiological factors. The study aims to evaluate the prevalence and clinical characteristics of OSCC patients and the association of these parameters in cases with and without tobacco usage. METHODOLOGY: A retrospective study spanning a period of 10 years was done on histopathologically diagnosed cases of OSCC. Various clinicopathological characteristics were collected from patient records, including demographic features, tobacco-related habits, including tobacco chewing and smoking, clinical presentation, anatomic sites, and histopathological grading based on the inclusion and exclusion criteria. The data were tabulated to Microsoft Excel (Microsoft Corporation, Redmond, WA), and descriptive statistics analysis and chi-square test of significance were applied to the data using IBM SPSS Statistics (version 29.0.2; IBM Corp., Armonk, NY). The study correlated the epidemiologic behavior of OSCC with age, gender, site, and tobacco-related habits. RESULTS: This study included a sample size of 204 (72 females & 132 males). Tobacco-related habit-associated cases were 98 (48.5%) and without tobacco habits were 61 cases (29.6%). Etiology associated with CMI emerged to be a significant tooth-related factor. Out of 72 females, 32 (44.4%) of the females were without habit. OSCC caused by trauma from CMI was analyzed in 40 cases (19.6%) and 22 (55%) were females. The majority of lesions (76 (37.4%) cases) presented on the lateral border of the tongue. Among the OSCC patients with a history of chronic mechanical irritation, 37 (48.7%) cases were observed to be specifically on the lateral border of the tongue. CONCLUSION: These 10-year data will generate awareness about the disease pattern occurring within a community and provide an overview of the prerequisite of considering CMI as an etiological factor for the development of OSCC without the association of tobacco-related habits.

14.
J Exp Bot ; 64(11): 3273-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23833196

RESUMO

In Narcissus tazetta, a monocotyledonous bulbous geophyte, floral initiation and differentiation occur within the bulb during the quiescent period in summer, when ambient temperatures are relatively high and the bulb is located underground with no foliage or roots. In many plant species, FLOWERING LOCUS T (FT) and its homologues are considered powerful promoters of flowering. The Narcissus FT gene homologue (NtFT) was isolated, and organ-specific expression patterns of NtFT during the annual cycle and reproductive development under different temperature regimes were analysed using quantitative reverse transcription-PCR (qRT-PCR) and RNA in situ hybridization. During floral induction, NtFT was not expressed in bulb scales, roots, or foliage leaves, but it was detected inside the bulb in the apical meristem and leaf primordia. The expression of another key flowering gene, NLF, the LEAFY homologue in N. tazetta, was also observed only in meristem and leaf primordia within the bulbs; however, its expression did not coincide with that of NtFT during meristem transition to reproductive stage. Under high temperatures (25-30 °C) in the dark, NtFT expression occurred simultaneously with floral induction timing, indicating that floral induction is affected by high temperatures but not by photoperiod or vernalization. Monitoring the apical meristem of Narcissus in February-August of two growing seasons under ambient and controlled storage conditions showed that transition to flowering is temperature dependent and varies between years. Lack of NtFT and NLF expression in foliage leaves suggests that flower initiation control in Narcissus differs from that in common model plants.


Assuntos
Flores/metabolismo , Narcissus/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hibridização In Situ , Narcissus/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Temperatura
15.
J Sci Food Agric ; 93(4): 973-6, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22886527

RESUMO

BACKGROUND: The existing protocol for the cultivation of oyster mushroom (Pleurotus florida) in polyethylene bags leads to environmental pollution amounting to 18 g of polyethylene per 450 g of mushroom, which is the average biological efficiency achieved from a bag. Thus the projected annual global pollution amounts to 2 million tones, corresponding to the production of 48 million tones. Experiments were conducted at Kerala Agricultural University, India, to formulate an oyster mushroom cultivation strategy that reduces this pollution level. RESULTS: Pooled results of experiments at the institute's and farmers' units have shown that reusable plastic buckets having perforations of 1.5 cm × 1.0 cm throughout the side walls could be used to substitute polyethylene bags, while following the standard cultivation protocols. Cultivation in perforated buckets has recorded a biological efficiency of 435.69 ± 56.75 g in 47.07 ± 5.22 days against 459.11 ± 53.52 g in 38.05 ± 4.54 days in polyethylene bags. The rate of contamination in buckets was significantly lower than that in bags: 9.28 ± 2.12 and 12.60 ± 3.73% respectively. CONCLUSION: Reusable plastic buckets with perforations on the side walls could be used to substitute the conventional polyethylene bags in oyster mushroom cultivation, with no significant difference in yield. Losses due to slight increase in crop duration in buckets will be compensated with a lower rate of contamination. For a unit having a daily output of 100 kg, it was estimated that during 10 years of permanent cultivation following this technique, the cost of cultivation could be reduced to one-tenth and the environmental pollution reduced by at least 730 000 non-degradable polyethylene bags.


Assuntos
Agricultura/instrumentação , Poluição Ambiental/prevenção & controle , Contaminação de Alimentos/prevenção & controle , Plásticos , Pleurotus , Agricultura/métodos , Biomassa , Análise Custo-Benefício , Dieta , Reutilização de Equipamento , Humanos , Índia , Polietileno
16.
Acad Forensic Pathol ; 13(3-4): 110-115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38298545

RESUMO

Cases involving electrocution burns are tough to investigate for the clinical forensic practitioner. Burns from high-voltage electrocution might seem like burns from other sources, especially if the victim is in an unconscious state. In this situation, circumstantial evidence in addition to clinical symptoms may be used to exclude other burns. Furthermore, the investigation of accident site results to aid in explaining the pattern of injuries discovered during a clinical evaluation. In this case study, we reported a case of a 33-year-old male who came in contact with a high-voltage transmission wire and was burned over both hands and lower back region. The exit wound was atypical in appearance, with a scorched area of peeling blistering skin, charring, and severe scorching over the lower back region which were correlated with the accident site, and the circumstances that led to electrocution injury.

17.
J Conserv Dent ; 26(2): 182-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205898

RESUMO

Context: Biocompatibility is one of the major prerequisites for safe clinical application of materials. Resin composites release their components into oral environment following restoration which cause adverse reactions. Aims: To evaluate and compare the genotoxicity and cytotoxicity of flowable, bulk-fill flowable, and nanohybrid composites with glass ionomer cement in human gingival cells using epithelial-based cytome assay. Methodology: Sixty healthy patients with noncarious cervical lesions were selected and randomly assigned to four groups (n = 15): Group A, glass ionomer cement; Group B, flowable composite; Group C, bulk-fill flowable composite; and Group D, nanohybrid composite. Class V restorations were done in each group with the respective restorative materials. Samples of epithelial cells were collected from gingiva before (control) (T1) and after 10 and 30 days (T2 and T3) postrestoration and examined for the presence of micronuclei and other nuclear anomalies. Statistical Analysis Used: The results were subjected to statistical analysis using Friedman's test and Kruskal-Wallis test. Results: The highest level of cytotoxicity was noted at T2 time point with a significant decline at T3 time point. Least cytotoxic damage was exhibited by Group A followed by Group D. Highest cytotoxic effect was shown by Group B followed by Group C. There was no significant level of genotoxicity induced by any of the materials tested at different time points. Conclusion: There is significant cytotoxicity induced by the tested composite materials which had no long-term effects and no genotoxicity was induced by any of the restorative materials tested.

18.
Waste Manag ; 169: 1-10, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37384969

RESUMO

Turmeric (Curcuma longa L.) is a significant crop that has historically been used worldwide as a medicinal plant, spice, food colouring agent, and a significant ingredient in cosmetic industries. After harvesting rhizomes, leaves are considered waste material. This research study aims to extract and chemically characterise the essential oil from the leaves waste of turmeric with an evaluation of different insecticidal, antioxidant, and phytotoxic activities. Subsequently, the contact toxicity, fumigant toxicity, and repellent activity were evaluated against two key stored grain insect species. The gas chromatography-mass spectrometry (GC-MS) characterisation revealed that α-phellandrene (28.95%), 2-carene (16.51%), eucalyptol (10.54%) and terpinolene (10.24%) were the major chemical constituents. The study's findings on the insecticidal effects of essential oils extracted from turmeric leaves revealed noteworthy repellent, contact (at 24 h, LC50 = 6.51 mg/cm2 for Tribolium castaneum and LC50 = 4.74 mg/cm2 for Rhyzopertha dominica) and fumigant toxicities (at 24 h, LC50 = 2.57 mg/L air for T. castaneum and LC50 = 2.83 mg/L air for R. dominica), against two key stored grain insects. In addition, turmeric leaf essential oil showed notable antioxidant activity (IC50 = 10.04 ± 0.03 µg/mL for DPPH assay; IC50 = 14.12 ± 0.21 µg/mL for ABTS assay. Furthermore, a phytotoxicity study was carried out on stored paddy seeds and no toxic effects were found on germination rate and seedling growth. So, it might be expected that the essential oils extracted from the turmeric leaf waste could be valorised and demonstrate their potential as safe botanical insecticides against stored-product insects, with noble antioxidant properties.


Assuntos
Besouros , Repelentes de Insetos , Inseticidas , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inseticidas/química , Inseticidas/farmacologia , Antioxidantes/farmacologia , Curcuma , Insetos , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química
19.
J Genet Eng Biotechnol ; 20(1): 74, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583842

RESUMO

BACKGROUND: Gongronella butleri is a fungus with many industrial applications including the composting of solid biowaste. Kerala Agricultural University, India, has developed a microbial consortium of which GbKAU strain of G. butleri is a major component. Even with great industrial significance, genome of this fungus is not published, and the genes and pathways contributing to the applications are not understood. This study had the objective to demonstrate the solid biowaste decomposing capability of the strain, to sequence and annotate the genome, and to reveal the genes and pathways contributing to its biodegradation potential. RESULTS: Strain GbKAU of G. butleri isolated and purified from the organic compost was found to produce higher levels of laccase and amylase, compared to Bacillus subtilis which is being widely used in biosolid waste management. Both were shown to be equally efficient in the in vivo composting capabilities. Whole genome sequencing has given ~11 million paired-end good quality reads. De novo assembly using dual-fold approach has yielded 44,639 scaffolds with draft genome size of 29.8 Mb. A total of 11,428 genes were predicted and classified into 359 groups involved in diverse pathways, of which 14 belonged to the enzymes involved in the degradation of macromolecules. Seven previously sequenced strains of the fungus were assembled and annotated. A direct comparison showed that the number of genes present in those strains was comparable to our strain, while all the important biodegrading genes were conserved across the genomes. Gene Ontology analysis had classified the genes according to their molecular function, biological process, and cellular component. A total of 104,718 SSRs were mined and classified to mono- to hexa-nucleotide repeats. The variant analysis in comparison with the closely related genus Cunninghamella has revealed 1156 variants. CONCLUSIONS: Apart from demonstrating the biodegradation capabilities of the GbKAU strain of G. butleri, the genome of this industrially important fungus was sequenced, de novo assembled, and annotated. GO analysis has classified the genes based on their functions, and the genes involved in biodegradation were revealed. Biodegradation potential, genome features in comparison with other strains, and the functions of the identified genes are discussed.

20.
Case Rep Dent ; 2022: 2667415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249079

RESUMO

Background: Metastatic cancers in the oral cavity are usually very rare and are usually an indication of widespread malignancy. In some cases, oral metastasis was found to be the first presentation of distant site tumours. Even though oral metastatic lesions may be found anywhere in the oral cavity, they commonly present in the posterior areas of the jaw bones. Among the soft tissues, the gingiva is the most common site. The presence of inflammation in the gingiva and the role of periodontal microbiota are suggested to play a role in the attraction of metastatic cells. The purpose of this case report is to present a rare case of metastatic breast carcinoma presenting as a gingival enlargement in the maxillary anterior region. Case Presentation. A 37-year-old female patient who underwent modified radical mastectomy for invasive ductal breast carcinoma reported to the dental clinic with a gingival enlargement in the anterior maxillary region. Clinical and radiographic examination showed a rapidly enlarging gingival lesion with destruction of the underlying bone. A wide excision of the entire lesion was done. Histopathological and immunohistochemical (IHC) evaluations were suggestive of infiltrating poorly differentiated adenocarcinoma. Conclusion: This case report presents a metastatic oral lesion in the maxillary anterior region of the primary breast cancer site. The young age of patient and an uncommon site of metastatic lesion are the striking features of this case. We would like to highlight the importance of a thorough clinical, radiological, and histological evaluation of any gingival swelling as it could be a metastatic lesion. IHC staining helps in the diagnosis of the primary site of metastatic carcinomas. An early diagnosis and intervention could reduce the morbidity of the lesion and improve the survival rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA