Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(10): 2615-2618, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186722

RESUMO

Fiber-optic hydrophones (FOHs) are widely used to detect high-intensity focused ultrasound (HIFU) fields. The most common type consists of an uncoated single-mode fiber with a perpendicularly cleaved end face. The main disadvantage of these hydrophones is their low signal-to-noise ratio (SNR). To increase the SNR, signal averaging is performed, but the associated increased acquisition times hinder ultrasound field scans. In this study, with a view to increasing SNR while withstanding HIFU pressures, the bare FOH paradigm is extended to include a partially reflective coating on the fiber end face. Here, a numerical model based on the general transfer-matrix method was implemented. Based on the simulation results, a single-layer, 172 nm TiO2-coated FOH was fabricated. The frequency range of the hydrophone was verified from 1 to 30 MHz. The SNR of the acoustic measurement with the coated sensor was 21 dB higher than that of the uncoated one. The coated sensor successfully withstood a peak positive pressure of 35 MPa for 6000 pulses.

2.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501738

RESUMO

Ultrasound is an essential tool for guidance of many minimally-invasive surgical and interventional procedures, where accurate placement of the interventional device is critical to avoid adverse events. Needle insertion procedures for anaesthesia, fetal medicine and tumour biopsy are commonly ultrasound-guided, and misplacement of the needle may lead to complications such as nerve damage, organ injury or pregnancy loss. Clear visibility of the needle tip is therefore critical, but visibility is often precluded by tissue heterogeneities or specular reflections from the needle shaft. This paper presents the in vitro and ex vivo accuracy of a new, real-time, ultrasound needle tip tracking system for guidance of fetal interventions. A fibre-optic, Fabry-Pérot interferometer hydrophone is integrated into an intraoperative needle and used to localise the needle tip within a handheld ultrasound field. While previous, related work has been based on research ultrasound systems with bespoke transmission sequences, the new system-developed under the ISO 13485 Medical Devices quality standard-operates as an adjunct to a commercial ultrasound imaging system and therefore provides the image quality expected in the clinic, superimposing a cross-hair onto the ultrasound image at the needle tip position. Tracking accuracy was determined by translating the needle tip to 356 known positions in the ultrasound field of view in a tank of water, and by comparison to manual labelling of the the position of the needle in B-mode US images during an insertion into an ex vivo phantom. In water, the mean distance between tracked and true positions was 0.7 ± 0.4 mm with a mean repeatability of 0.3 ± 0.2 mm. In the tissue phantom, the mean distance between tracked and labelled positions was 1.1 ± 0.7 mm. Tracking performance was found to be independent of needle angle. The study demonstrates the performance and clinical compatibility of ultrasound needle tracking, an essential step towards a first-in-human study.


Assuntos
Tecnologia de Fibra Óptica , Agulhas , Gravidez , Feminino , Humanos , Ultrassonografia , Imagens de Fantasmas , Água , Ultrassonografia de Intervenção/métodos
3.
Med Phys ; 50(6): 3490-3497, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842082

RESUMO

BACKGROUND: Transesophageal echocardiography (TEE) is widely used to guide medical device placement in minimally invasive cardiovascular procedures. However, visualization of the device tip with TEE can be challenging. Ultrasonic tracking, enabled by an integrated fiber optic ultrasound sensor (FOUS) that receives transmissions from the TEE probe, is very well suited to improving device localization in this context. The problem addressed in this study is that tight deflections of devices such as a steerable guide catheter can result in bending of the FOUS beyond its specifications and a corresponding loss of ultrasound sensitivity. PURPOSE: A bend-insensitive FOUS was developed, and its utility with ultrasonic tracking of a steerable tip during TEE-based image guidance was demonstrated. METHODS: Fiberoptic ultrasound sensors were fabricated using both standard and bend insensitive single mode fibers and subjected to static bending at the distal end. The interference transfer function and ultrasound sensitivities were compared for both types of FOUS. The bend-insensitive FOUS was integrated within a steerable guide catheter, which served as an exemplar device; the signal-to-noise ratio (SNR) of tracking signals from the catheter tip with a straight and a fully deflected distal end were measured in a cardiac ultrasound phantom for over 100 frames. RESULTS: With tight bending at the distal end (bend radius < 10 mm), the standard FOUS experienced a complete loss of US sensitivity due to high attenuation in the fiber, whereas the bend-insensitive FOUS had largely unchanged performance, with a SNR of 47.7 for straight fiber and a SNR of 36.8 at a bend radius of 3.0 mm. When integrated into the steerable guide catheter, the mean SNRs of the ultrasonic tracking signals recorded with the catheter in a cardiac phantom were similar for straight and fully deflected distal ends: 195 and 163. CONCLUSION: The FOUS fabricated from bend-insensitive fiber overcomes the bend restrictions associated with the FOUS fabricated from standard single mode fiber, thereby enabling its use in ultrasonic tracking in a wide range of cardiovascular devices.


Assuntos
Tecnologia de Fibra Óptica , Ultrassom , Ultrassonografia/métodos , Coração/diagnóstico por imagem , Catéteres
4.
Ultrasound Med Biol ; 48(3): 520-529, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34974926

RESUMO

Accurate identification of the needle tip is a key challenge with ultrasound-guided percutaneous interventions in regional anaesthesia, foetal surgery and cardiovascular medicine. In this study, we developed an ultrasonic needle tracking system in which the measured needle tip location was used to set the electronic focus of the external ultrasound imaging probe. In this system, needle tip tracking was enabled with a fibre-optic ultrasound sensor that was integrated into a needle stylet, and the A-lines recorded by the sensor were processed to generate tracking images of the needle tip. The needle tip position was estimated from the tracking images. The dependency of the tracking image on the electronic focal depth of the external ultrasound imaging probe was studied in a water bath and with needle insertions into a clinical training phantom. The variability in the estimated tracked position of the needle tip, with the needle tip at fixed depths in the imaging plane across a depth range from 0.5 to 7.5 cm, was studied. When the electronic focus was fixed, the variability of tracked position was found to increase with distance from that focus. The variability with the fixed focus was found to depend on the the relative distance between the needle tip and focal depth. It was found that with dynamic focusing, the maximum variability of tracked position was below 0.31 mm, as compared with 3.97 mm for a fixed focus.


Assuntos
Agulhas , Ultrassom , Eletrônica , Imagens de Fantasmas , Ultrassonografia , Ultrassonografia de Intervenção/métodos
5.
Appl Opt ; 50(17): 2628-35, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21673765

RESUMO

The application of nematic liquid crystal infiltrated photonic crystal fiber as a sensor for electric field intensity measurement is demonstrated. The device is based on an intrinsic sensing mechanism for electric fields. The sensor probe, which consists of a 1 cm infiltrated section of photonic crystal fiber with a lateral size of ∼125 µm, is very compact with small size and weight. A simple all-fiber design for the sensor is employed in an intensity based measurement scheme. The transmitted and reflected power of the infiltrated photonic crystal fiber is shown to have a linear response with the applied electric field. The sensor is operated in the telecommunication window at 1550 nm. The temperature dependence of the device at this operating wavelength is also experimentally studied and discussed. These structures can be used to accurately measure electric field intensity and can be used for the fabrication of all-fiber sensors for high electric field environments as both an in-line and reflective type point sensor.

6.
Adv Mater Interfaces ; 8(20): 2100518, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34777946

RESUMO

Dual-modality imaging employing complementary modalities, such as all-optical ultrasound and photoacoustic imaging, is emerging as a well-suited technique for guiding minimally invasive surgical procedures. Quantum dots are a promising material for use in these dual-modality imaging devices as they can provide wavelength-selective optical absorption. The first quantum dot nanocomposite engineered for co-registered laser-generated ultrasound and photoacoustic imaging is presented. The nanocomposites developed, comprising CuInS2 quantum dots and medical-grade polydimethylsiloxane (CIS-PDMS), are applied onto the distal ends of miniature optical fibers. The films exhibit wavelength-selective optical properties, with high optical absorption (> 90%) at 532 nm for ultrasound generation, and low optical absorption (< 5%) at near-infrared wavelengths greater than 700 nm. Under pulsed laser irradiation, the CIS-PDMS films generate ultrasound with pressures exceeding 3.5 MPa, with a corresponding bandwidth of 18 MHz. An ultrasound transducer is fabricated by pairing the coated optical fiber with a Fabry-Pérot (FP) fiber optic sensor. The wavelength-selective nature of the film is exploited to enable co-registered all-optical ultrasound and photoacoustic imaging of an ink-filled tube phantom. This work demonstrates the potential for quantum dots as wavelength-selective absorbers for all-optical ultrasound generation.

7.
J Vis Exp ; (138)2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30199033

RESUMO

Ultrasound is frequently used for guiding minimally invasive procedures, but visualizing medical devices is often challenging with this imaging modality. When visualization is lost, the medical device can cause trauma to critical tissue structures. Here, a method to track the needle tip during ultrasound image-guided procedures is presented. This method involves the use of a fiber-optic ultrasound receiver that is affixed within the cannula of a medical needle to communicate ultrasonically with the external ultrasound probe. This custom probe comprises a central transducer element array and side element arrays. In addition to conventional two-dimensional (2D) B-mode ultrasound imaging provided by the central array, three-dimensional (3D) needle tip tracking is provided by the side arrays. For B-mode ultrasound imaging, a standard transmit-receive sequence with electronic beamforming is performed. For ultrasonic tracking, Golay-coded ultrasound transmissions from the 4 side arrays are received by the hydrophone sensor, and subsequently the received signals are decoded to identify the needle tip's spatial location with respect to the ultrasound imaging probe. As a preliminary validation of this method, insertions of the needle/hydrophone pair were performed in clinically realistic contexts. This novel ultrasound imaging/tracking method is compatible with current clinical workflow, and it provides reliable device tracking during in-plane and out-of-plane needle insertions.


Assuntos
Imageamento Tridimensional/instrumentação , Agulhas , Fibras Ópticas , Ultrassonografia/instrumentação , Humanos , Transdutores
8.
Photoacoustics ; 11: 65-70, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30112279

RESUMO

Intravascular imaging in percutaneous coronary interventions can be an invaluable tool in the treatment of coronary artery disease. It is of significant interest to provide molecular imaging contrast that is complementary to structural contrast provided by optical coherence tomography (OCT) and intravascular ultrasound imaging (IVUS). In this study, we developed a dual-modality intravascular imaging probe comprising a commercial OCT catheter and a high sensitivity fiber optic ultrasound sensor, to provide both photoacoustic (PA) and OCT imaging. With PA imaging, the lateral resolution varied from 18 µm to 40 µm; the axial resolution was consistently in the vicinity of 45 µm. We demonstrated the clinical potential of the probe with 2-D circumferential PA and OCT imaging, and with multispectral PA imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA