RESUMO
The S100A8/A9 heterodimer is abundantly expressed by myeloid cells, especially neutrophils, but its mechanism of action is only partially determined. In this study we investigated S100A8/A9 involvement in the host response to Streptococcus pneumoniae infection making use of S100a9(-/-) mice that lack heterodimer expression in myeloid cells. S100a9(-/-) mice that were infected intranasally with pneumococci rapidly succumbed, with 80% mortality after 48 h, whereas the majority of wild-type mice recovered. Over this time period, S100a9(-/-) mice displayed an average 6-fold reduction in circulating and lung-recruited neutrophils. Taqman analysis of S100a9(-/-) lungs revealed decreased production of a dominant subset of 5 cytokines and chemokines associated with neutrophil recruitment. The greatest differential was with the cytokine granulocyte colony-stimulating factor (G-CSF) that causes bone marrow release of neutrophils into the circulation (1900-fold difference at 48 h). Treating S100a9(-/-) mice with G-CSF reversed their increased susceptibility to infection by enhancing both circulating neutrophils and neutrophil recruitment into infected lungs, by reducing pneumococcal colony forming units, and by elevation of chemokine CXCL1, cytokine IL-6, and endogenous G-CSF proteins. Thus S100A9, potentially with its partner S100A8, makes a major contribution in the host response to pneumococcal infection by increasing circulating neutrophils principally regulation of G-CSF production.
Assuntos
Calgranulina B/fisiologia , Infiltração de Neutrófilos/fisiologia , Pneumonia Pneumocócica/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Calgranulina A/fisiologia , Calgranulina B/genética , Dimerização , Suscetibilidade a Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificaçãoRESUMO
Early neutrophil entry into an inflammatory site is thought to mediate a chemokine switch, inducing subsequent monocyte recruitment through the regulation of monocyte chemoattractant protein-1 (MCP-1) release. As the murine monocyte is poorly characterized and difficult to identify, there has been little examination of either its early recruitment in inflammatory models or of the factors that influence its early migration. The phenotyping of rapidly recruited inflammatory leukocytes with 7/4 and Gr-1 monoclonal antibodies (mAbs) identifies 2 distinct populations, which we characterize as murine monocytes and neutrophils. Monocytes migrate in the first 2 hours of inflammation making use of alpha4beta1 but not of Mac-1 or lymphocyte function-associated antigen-1 (LFA-1) integrins. Early migration is dependent on MCP-1, but neither MCP-1 release nor monocyte recruitment is affected by the reduced neutrophil migration seen in LFA-1-/- mice. Endogenous peritoneal macrophages and mesothelial cells lining the peritoneum contain MCP-1, which is released following thioglycollate stimulation. The murine monocyte therefore responds rapidly to chemokines produced in situ by tissue cells at the site of inflammation with no requirement for prior influx of neutrophils.