Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 32(7): 1747-1763, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34135082

RESUMO

BACKGROUND: Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed. METHODS: A cross-sectional study of 993 plasma proteins among 2882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and transcriptomic data from independent studies were used to examine the association between gene expression in kidney tissue and eGFR. RESULTS: In total, 57 plasma proteins were associated with eGFR, including one novel protein. Of these, 23 were additionally associated with CKD. The strongest inferred causal effect was the positive effect of eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-coding gene (SPOCK2) in renal tissue. We also observed suggestive evidence of an effect of melanoma inhibitory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR. CONCLUSIONS: In a discovery-replication setting, we identified 57 proteins transethnically associated with eGFR. The revealed causal relationships are an important stepping stone in establishing testican-2 as a clinically relevant physiological marker of kidney disease progression, and point to additional proteins warranting further investigation.

2.
Kidney Int ; 99(4): 926-939, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33137338

RESUMO

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.


Assuntos
Estudo de Associação Genômica Ampla , Rim , Proteínas Quinases Ativadas por AMP , Creatinina , Taxa de Filtração Glomerular/genética , Humanos , Isomerases de Dissulfetos de Proteínas , Reino Unido
3.
Biomolecules ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38927065

RESUMO

Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine (5hmC). In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hydroxymethylation (5hmC) levels were profiled utilizing conventional bisulphite (BS) and oxidative bisulphite (oxBS) treatment, measured with the Illumina Infinium Methylation EPIC BeadChip. An epigenome-wide association study (EWAS) of 5mC+5hmC methylation revealed a total of 38,575 differentially methylated positions (DMPs) and 2023 differentially methylated regions (DMRs) associated with current smoking, along with 82 DMPs and 76 DMRs associated with former smoking (FDR-adjusted p < 0.05). Additionally, a focused examination of 5mC identified 33 DMPs linked to current smoking and 1 DMP associated with former smoking (FDR-adjusted p < 0.05). In the 5hmC category, eight DMPs related to current smoking and two DMPs tied to former smoking were identified, each meeting a suggestive threshold (p < 1 × 10-5). The substantial number of recognized DMPs, including 5mC+5hmC (7069/38,575, 2/82), 5mC (0/33, 1/1), and 5hmC (2/8, 0/2), have not been previously reported. Our findings corroborated previously established methylation positions and revealed novel candidates linked to tobacco smoking. Moreover, the identification of hydroxymethylated CpG sites with suggestive links provides avenues for future research.


Assuntos
5-Metilcitosina , Metilação de DNA , Fumar , Humanos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Masculino , Feminino , Fumar/genética , Fumar/efeitos adversos , Pessoa de Meia-Idade , Idoso , Estudos de Coortes , Estudo de Associação Genômica Ampla , Epigênese Genética , Ilhas de CpG/genética , Adulto
4.
Clin Epigenetics ; 16(1): 29, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365790

RESUMO

BACKGROUND: Dietary intake of n-3 polyunsaturated fatty acids (PUFA) may have a protective effect on the development of cardiovascular diseases, diabetes, depression and cancer, while a high intake of n-6 PUFA was often reported to be associated with inflammation-related traits. The effect of PUFAs on health outcomes might be mediated by DNA methylation (DNAm). The aim of our study is to identify the impact of PUFA intake on DNAm in the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and the Leiden Longevity Study (LLS). RESULTS: DNA methylation levels were measured in whole blood from the population-based KORA FF4 study (N = 1354) and LLS (N = 448), using the Illumina MethylationEPIC BeadChip and Illumina HumanMethylation450 array, respectively. We assessed associations between DNAm and intake of eight and four PUFAs in KORA and LLS, respectively. Where possible, results were meta-analyzed. Below the Bonferroni correction threshold (p < 7.17 × 10-8), we identified two differentially methylated positions (DMPs) associated with PUFA intake in the KORA study. The DMP cg19937480, annotated to gene PRDX1, was positively associated with docosahexaenoic acid (DHA) in model 1 (beta: 2.00 × 10-5, 95%CI: 1.28 × 10-5-2.73 × 10-5, P value: 6.98 × 10-8), while cg05041783, annotated to gene MARK2, was positively associated with docosapentaenoic acid (DPA) in our fully adjusted model (beta: 9.80 × 10-5, 95%CI: 6.25 × 10-5-1.33 × 10-4, P value: 6.75 × 10-8). In the meta-analysis, we identified the CpG site (cg15951061), annotated to gene CDCA7L below Bonferroni correction (1.23 × 10-7) associated with eicosapentaenoic acid (EPA) intake in model 1 (beta: 2.00 × 10-5, 95% CI: 1.27 × 10-5-2.73 × 10-5, P value = 5.99 × 10-8) and we confirmed the association of cg19937480 with DHA in both models 1 and 2 (beta: 2.07 × 10-5, 95% CI: 1.31 × 10-5-2.83 × 10-5, P value = 1.00 × 10-7 and beta: 2.19 × 10-5, 95% CI: 1.41 × 10-5-2.97 × 10-5, P value = 5.91 × 10-8 respectively). CONCLUSIONS: Our study identified three CpG sites associated with PUFA intake. The mechanisms of these sites remain largely unexplored, highlighting the novelty of our findings. Further research is essential to understand the links between CpG site methylation and PUFA outcomes.


Assuntos
Epigenoma , Ácidos Graxos Ômega-3 , Humanos , Metilação de DNA , Ácidos Graxos , Ácidos Docosa-Hexaenoicos , Proteínas Repressoras
5.
Nat Commun ; 15(1): 2359, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504097

RESUMO

Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.


Assuntos
Hipertensão , Proteoma , Humanos , Pressão Sanguínea/genética , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Multiômica , Hipertensão/metabolismo , Rim/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo
6.
J Gerontol A Biol Sci Med Sci ; 77(9): 1750-1759, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35172329

RESUMO

Educational inequalities in all-cause mortality have been observed for decades. However, the underlying biological mechanisms are not well known. We aimed to assess the role of DNA methylation changes in blood captured by epigenetic clocks in explaining these inequalities. Data were from 8 prospective population-based cohort studies, representing 13 021 participants. First, educational inequalities and their portion explained by Horvath DNAmAge, Hannum DNAmAge, DNAmPhenoAge, and DNAmGrimAge epigenetic clocks were assessed in each cohort via counterfactual-based mediation models, on both absolute (hazard difference) and relative (hazard ratio) scales, and by sex. Second, estimates from each cohort were pooled through a random effect meta-analysis model. Men with low education had excess mortality from all causes of 57 deaths per 10 000 person-years (95% confidence interval [CI]: 38, 76) compared with their more advantaged counterparts. For women, the excess mortality was 4 deaths per 10 000 person-years (95% CI: -11, 19). On the relative scale, educational inequalities corresponded to hazard ratios of 1.33 (95% CI: 1.12, 1.57) for men and 1.15 (95% CI: 0.96, 1.37) for women. DNAmGrimAge accounted for the largest proportion, approximately 50%, of the educational inequalities for men, while the proportion was negligible for women. Most of this mediation was explained by differential effects of unhealthy lifestyles and morbidities of the World Health Organization (WHO) risk factors for premature mortality. These results support DNA methylation-based epigenetic aging as a signature of educational inequalities in life expectancy emphasizing the need for policies to address the unequal social distribution of these WHO risk factors.


Assuntos
Epigênese Genética , Epigenômica , Escolaridade , Feminino , Humanos , Masculino , Mortalidade , Estudos Prospectivos , Fatores de Risco , Fatores Socioeconômicos
7.
Nat Genet ; 54(1): 18-29, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980917

RESUMO

We determined the relationships between DNA sequence variation and DNA methylation using blood samples from 3,799 Europeans and 3,195 South Asians. We identify 11,165,559 SNP-CpG associations (methylation quantitative trait loci (meQTL), P < 10-14), including 467,915 meQTL that operate in trans. The meQTL are enriched for functionally relevant characteristics, including shared chromatin state, High-throuhgput chromosome conformation interaction, and association with gene expression, metabolic variation and clinical traits. We use molecular interaction and colocalization analyses to identify multiple nuclear regulatory pathways linking meQTL loci to phenotypic variation, including UBASH3B (body mass index), NFKBIE (rheumatoid arthritis), MGA (blood pressure) and COMMD7 (white cell counts). For rs6511961 , chromatin immunoprecipitation followed by sequencing (ChIP-seq) validates zinc finger protein (ZNF)333 as the likely trans acting effector protein. Finally, we used interaction analyses to identify population- and lineage-specific meQTL, including rs174548 in FADS1, with the strongest effect in CD8+ T cells, thus linking fatty acid metabolism with immune dysregulation and asthma. Our study advances understanding of the potential pathways linking genetic variation to human phenotype.


Assuntos
Metilação de DNA/genética , Variação Genética , Artrite Reumatoide/genética , Ásia , Pressão Sanguínea/genética , Índice de Massa Corporal , Linfócitos T CD8-Positivos/metabolismo , Ilhas de CpG , Replicação do DNA , Europa (Continente) , Estudo de Associação Genômica Ampla , Humanos , Leucócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Nat Commun ; 12(1): 1279, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627659

RESUMO

Blood circulating proteins are confounded readouts of the biological processes that occur in different tissues and organs. Many proteins have been linked to complex disorders and are also under substantial genetic control. Here, we investigate the associations between over 1000 blood circulating proteins and body mass index (BMI) in three studies including over 4600 participants. We show that BMI is associated with widespread changes in the plasma proteome. We observe 152 replicated protein associations with BMI. 24 proteins also associate with a genome-wide polygenic score (GPS) for BMI. These proteins are involved in lipid metabolism and inflammatory pathways impacting clinically relevant pathways of adiposity. Mendelian randomization suggests a bi-directional causal relationship of BMI with LEPR/LEP, IGFBP1, and WFIKKN2, a protein-to-BMI relationship for AGER, DPT, and CTSA, and a BMI-to-protein relationship for another 21 proteins. Combined with animal model and tissue-specific gene expression data, our findings suggest potential therapeutic targets further elucidating the role of these proteins in obesity associated pathologies.


Assuntos
Obesidade/metabolismo , Proteoma/metabolismo , Adulto , Idoso , Índice de Massa Corporal , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Obesidade/genética , Proteômica/métodos
9.
Clin Epigenetics ; 13(1): 143, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294131

RESUMO

BACKGROUND: Non-coding RNA 886 (nc886) is coded from a maternally inherited metastable epiallele. We set out to investigate the determinants and dynamics of the methylation pattern at the nc886 epiallele and how this methylation status associates with nc886 RNA expression. Furthermore, we investigated the associations between the nc886 methylation status or the levels of nc886 RNAs and metabolic traits in the YFS and KORA cohorts. The association between nc886 epiallele methylation and RNA expression was also validated in induced pluripotent stem cell (iPSC) lines. RESULTS: We confirm that the methylation status of the nc886 epiallele is mostly binomial, with individuals displaying either a non- or hemi-methylated status, but we also describe intermediately and close to fully methylated individuals. We show that an individual's methylation status is associated with the mother's age and socioeconomic status, but not with the individual's own genetics. Once established, the methylation status of the nc886 epiallele remains stable for at least 25 years. This methylation status is strongly associated with the levels of nc886 non-coding RNAs in serum, blood, and iPSC lines. In addition, nc886 methylation status associates with glucose and insulin levels during adolescence but not with the indicators of glucose metabolism or the incidence of type 2 diabetes in adulthood. However, the nc886-3p RNA levels also associate with glucose metabolism in adulthood. CONCLUSIONS: These results indicate that nc886 metastable epiallele methylation is tuned by the periconceptional conditions and it associates with glucose metabolism through the expression of the ncRNAs coded in the epiallele region.


Assuntos
Transtornos do Metabolismo de Glucose/genética , RNA não Traduzido/análise , Adulto , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética , Humanos
10.
Clin Epigenetics ; 13(1): 7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413638

RESUMO

BACKGROUND: The discovery of robust and trans-ethnically replicated DNA methylation markers of metabolic phenotypes, has hinted at a potential role of epigenetic mechanisms in lipid metabolism. However, DNA methylation and the lipid compositions and lipid concentrations of lipoprotein sizes have been scarcely studied. Here, we present an epigenome-wide association study (EWAS) (N = 5414 total) of mostly lipid-related metabolic measures, including a fine profiling of lipoproteins. As lipoproteins are the main players in the different stages of lipid metabolism, examination of epigenetic markers of detailed lipoprotein features might improve the diagnosis, prognosis, and treatment of metabolic disturbances. RESULTS: We conducted an EWAS of leukocyte DNA methylation and 226 metabolic measurements determined by nuclear magnetic resonance spectroscopy in the population-based KORA F4 study (N = 1662) and replicated the results in the LOLIPOP, NFBC1966, and YFS cohorts (N = 3752). Follow-up analyses in the discovery cohort included investigations into gene transcripts, metabolic-measure ratios for pathway analysis, and disease endpoints. We identified 161 associations (p value < 4.7 × 10-10), covering 16 CpG sites at 11 loci and 57 metabolic measures. Identified metabolic measures were primarily medium and small lipoproteins, and fatty acids. For apolipoprotein B-containing lipoproteins, the associations mainly involved triglyceride composition and concentrations of cholesterol esters, triglycerides, free cholesterol, and phospholipids. All associations for HDL lipoproteins involved triglyceride measures only. Associated metabolic measure ratios, proxies of enzymatic activity, highlight amino acid, glucose, and lipid pathways as being potentially epigenetically implicated. Five CpG sites in four genes were associated with differential expression of transcripts in blood or adipose tissue. CpG sites in ABCG1 and PHGDH showed associations with metabolic measures, gene transcription, and metabolic measure ratios and were additionally linked to obesity or previous myocardial infarction, extending previously reported observations. CONCLUSION: Our study provides evidence of a link between DNA methylation and the lipid compositions and lipid concentrations of different lipoprotein size subclasses, thus offering in-depth insights into well-known associations of DNA methylation with total serum lipids. The results support detailed profiling of lipid metabolism to improve the molecular understanding of dyslipidemia and related disease mechanisms.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Metaboloma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Obesidade/genética , Obesidade/fisiopatologia
11.
Clin Epigenetics ; 13(1): 121, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078457

RESUMO

BACKGROUND: The difference between an individual's chronological and DNA methylation predicted age (DNAmAge), termed DNAmAge acceleration (DNAmAA), can capture life-long environmental exposures and age-related physiological changes reflected in methylation status. Several studies have linked DNAmAA to morbidity and mortality, yet its relationship with kidney function has not been assessed. We evaluated the associations between seven DNAm aging and lifespan predictors (as well as GrimAge components) and five kidney traits (estimated glomerular filtration rate [eGFR], urine albumin-to-creatinine ratio [uACR], serum urate, microalbuminuria and chronic kidney disease [CKD]) in up to 9688 European, African American and Hispanic/Latino individuals from seven population-based studies. RESULTS: We identified 23 significant associations in our large trans-ethnic meta-analysis (p < 1.43E-03 and consistent direction of effect across studies). Age acceleration measured by the Extrinsic and PhenoAge estimators, as well as Zhang's 10-CpG epigenetic mortality risk score (MRS), were associated with all parameters of poor kidney health (lower eGFR, prevalent CKD, higher uACR, microalbuminuria and higher serum urate). Six of these associations were independently observed in European and African American populations. MRS in particular was consistently associated with eGFR (ß = - 0.12, 95% CI = [- 0.16, - 0.08] change in log-transformed eGFR per unit increase in MRS, p = 4.39E-08), prevalent CKD (odds ratio (OR) = 1.78 [1.47, 2.16], p = 2.71E-09) and higher serum urate levels (ß = 0.12 [0.07, 0.16], p = 2.08E-06). The "first-generation" clocks (Hannum, Horvath) and GrimAge showed different patterns of association with the kidney traits. Three of the DNAm-estimated components of GrimAge, namely adrenomedullin, plasminogen-activation inhibition 1 and pack years, were positively associated with higher uACR, serum urate and microalbuminuria. CONCLUSION: DNAmAge acceleration and DNAm mortality predictors estimated in whole blood were associated with multiple kidney traits, including eGFR and CKD, in this multi-ethnic study. Epigenetic biomarkers which reflect the systemic effects of age-related mechanisms such as immunosenescence, inflammaging and oxidative stress may have important mechanistic or prognostic roles in kidney disease. Our study highlights new findings linking kidney disease to biological aging, and opportunities warranting future investigation into DNA methylation biomarkers for prognostic or risk stratification in kidney disease.


Assuntos
Senilidade Prematura/mortalidade , Mortalidade/tendências , Insuficiência Renal/sangue , Idoso , Senilidade Prematura/epidemiologia , Senilidade Prematura/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal/etiologia , Insuficiência Renal/mortalidade
12.
Genome Biol ; 22(1): 194, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187551

RESUMO

BACKGROUND: Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS: Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION: This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , Loci Gênicos , Herança Multifatorial , Adiposidade/genética , Adiposidade/imunologia , Envelhecimento/imunologia , Biomarcadores/metabolismo , Proteína C-Reativa/genética , Proteína C-Reativa/imunologia , Ilhas de CpG , Escolaridade , Marcadores Genéticos , Genoma Humano , Estudo de Associação Genômica Ampla , Granulócitos/citologia , Granulócitos/imunologia , Humanos , Imunidade Inata , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/imunologia , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/imunologia
13.
Nat Commun ; 12(1): 7173, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887389

RESUMO

Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E-7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.


Assuntos
Epigenoma , Proteínas Facilitadoras de Transporte de Glucose/genética , Gota/genética , Ácido Úrico/sangue , Sistema y+ de Transporte de Aminoácidos/genética , Estudos de Coortes , Ilhas de CpG , Metilação de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Gota/sangue , Humanos , Masculino
14.
Nat Commun ; 12(1): 7174, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887417

RESUMO

Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.


Assuntos
Metilação de DNA , Insuficiência Renal Crônica/genética , Adulto , Idoso , Ilhas de CpG , Feminino , Taxa de Filtração Glomerular , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Rim/metabolismo , Rim/fisiopatologia , Testes de Função Renal , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
PLoS One ; 15(1): e0227648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31935258

RESUMO

Sample collection, processing, storage and isolation methods constitute pre-analytic factors that can influence the quality of samples used in research and clinical practice. With regard to biobanking practices, a critical point in the sample's life chain is storage, particularly long-term storage. Since most studies examine the influence of different temperatures (4°C, room temperature) or delays in sample processing on sample quality, there is only little information on the effects of long-term storage at ultra-low (vapor phase of liquid nitrogen) temperatures on biomarker levels. Among these biomarkers, circulating miRNAs hold great potential for diagnosis or prognosis for a variety of diseases, like cancer, infections and chronic diseases, and are thus of high interest in several scientific questions. We therefore investigated the influence of long-term storage on levels of eight circulating miRNAs (miR-103a-3p, miR-191-5p, miR-124-3p, miR-30c-5p, miR-451a, miR-23a-3p, miR-93-5p, miR-24-3p, and miR-33b-5p) from 10 participants from the population-based cohort study KORA. Sample collection took place during the baseline survey S4 and the follow-up surveys F4 and FF4, over a time period spanning from 1999 to 2014. The influence of freeze-thaw (f/t) cycles on miRNA stability was also investigated using samples from volunteers (n = 6). Obtained plasma samples were profiled using Exiqon's miRCURYTM real-time PCR profiling system, and repeated measures ANOVA was used to check for storage or f/t effects. Our results show that detected levels of most of the studied miRNAs showed no statistically significant changes due to storage at ultra-low temperatures for up to 17 years; miR-451a levels were altered due to contamination during sampling. Freeze-thawing of one to four cycles showed an effect only on miR-30c-5p. Our results highlight the robustness of this set of circulating miRNAs for decades of storage at ultra-low temperatures and several freeze-thaw cycles, which makes our findings increasingly relevant for research conducted with biobanked samples.


Assuntos
Congelamento/efeitos adversos , Manejo de Espécimes/métodos , Tempo , Adulto , Bancos de Espécimes Biológicos/normas , Biomarcadores/sangue , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , MicroRNA Circulante/isolamento & purificação , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Estabilidade de RNA , Transcriptoma/genética
16.
Transl Psychiatry ; 10(1): 323, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958748

RESUMO

The role of self-perceived general health in predicting morbidity and mortality among older people is established. The predictive value of self-perceived mental health and of its possible biological underpinnings for future depressive symptoms is unexplored. This study aimed to assess the role of mental health-related quality of life (HRQOL) and of its epigenetic markers in predicting depressive symptoms among older people without lifetime history of depression. Data were based on a subgroup (n = 1 492) of participants of the longitudinal ESTHER study. An epigenome-wide association study (EWAS) of mental HRQOL was conducted using DNA from baseline whole blood samples and logistic regression analyses were performed to assess the predictive value of methylation beta values of EWAS identified CpGs for incidence of depressive symptoms in later life. The methylation analyses were replicated in the independent KORA cohort (n = 890) and a meta-analysis of the two studies was conducted. Results of the meta-analysis showed that participants with beta values of cg27115863 within quartile 1 (Q1) had nearly a two-fold increased risk of developing depressive symptoms compared to participants with beta values within Q4 (ORQ1vsQ4 = 1.80; CI 1.25-2.61). In the ESTHER study the predictive value of subjective mental health for future depressive symptoms was also assessed and for 10-unit increase in mental HRQOL scores the odds for incident depressive symptoms were reduced by 54% (OR 0.46; CI 0.40-0.54). These findings suggest that subjective mental health and hypomethylation at cg27115863 are predictive of depressive symptoms, possibly through the activation of inflammatory signaling pathway.


Assuntos
Depressão , Saúde Mental , Idoso , Estudos de Coortes , Depressão/epidemiologia , Depressão/genética , Humanos , Incidência , Estudos Longitudinais , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA