Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurol ; 9: 632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116220

RESUMO

The interaction of Mesial Temporal Lobe Epilepsy (mTLE) with the circadian system control is apparent from an oscillatory pattern of limbic seizures, daytime's effect on seizure onset and the efficacy of antiepileptic drugs. Moreover, seizures per se can interfere with the biological rhythm output, including circadian oscillation of body temperature, locomotor activity, EEG pattern as well as the transcriptome. However, the molecular mechanisms underlying this cross-talk remain unclear. In this study, we systematically evaluated the temporal expression of seven core circadian transcripts (Bmal1, Clock, Cry1, Cry2, Per1, Per2, and Per3) and the spontaneous locomotor activity (SLA) in post-status epilepticus (SE) model of mTLE. Twenty-four hour oscillating SLA remained intact in post-SE groups although the circadian phase and the amount and intensity of activity were changed in early post-SE and epileptic phases. The acrophase of the SLA rhythm was delayed during epileptogenesis, a fragmented 24 h rhythmicity and extended active phase length appeared in the epileptic phase. The temporal expression of circadian transcripts Bmal1, Cry1, Cry2, Per1, Per2, and Per3 was also substantially altered. The oscillatory expression of Bmal1 was maintained in rats imperiled to SE, but with lower amplitude (A = 0.2) and an advanced acrophase in the epileptic phase. The diurnal rhythm of Cry1 and Cry2 was absent in the early post-SE but was recovered in the epileptic phase. Per1 and Per2 rhythmic expression were disrupted in post-SE groups while Per3 presented an arrhythmic profile in the epileptic phase, only. The expression of Clock did not display rhythmic pattern in any condition. These oscillating patterns of core clock genes may contribute to hippocampal 24 h cycling and, consequently to seizure periodicity. Furthermore, by using a pool of samples collected at 6 different Zeitgeber Times (ZT), we found that all clock transcripts were significantly dysregulated after SE induction, except Per3 and Per2. Collectively, altered SLA rhythm in early post-SE and epileptic phases implies a possible role for seizure as a nonphotic cue, which is likely linked to activation of hippocampal-accumbens pathway. On the other hand, altered temporal expression of the clock genes after SE suggests their involvement in the MTLE.

2.
PLoS One ; 12(8): e0182765, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28783762

RESUMO

Neuropathological studies often use autopsy brain tissue as controls to evaluate changes in protein or RNA levels in several diseases. In mesial temporal lobe epilepsy (MTLE), several genes are up or down regulated throughout the epileptogenic and chronic stages of the disease. Given that postmortem changes in several gene transcripts could impact the detection of changes in case-control studies, we evaluated the effect of using autopsy specimens with different postmortem intervals (PMI) on differential gene expression of the Pilocarpine (PILO)induced Status Epilepticus (SE) of MTLE. For this, we selected six genes (Gfap, Ppia, Gad65, Gad67, Npy, and Tnf-α) whose expression patterns in the hippocampus of PILO-injected rats are well known. Initially, we compared hippocampal expression of naïve rats whose hippocampi were harvested immediately after death (0h-PMI) with those harvested at 6h postmortem interval (6h-PMI): Npy and Ppia transcripts increased and Tnf-α transcripts decreased in the 6h-PMI group (p<0.05). We then investigated if these PMI-related changes in gene expression have the potential to adulterate or mask RT-qPCR results obtained with PILO-injected rats euthanized at acute or chronic phases. In the acute group, Npy transcript was significantly higher when compared with 0h-PMI rats, whereas Ppia transcript was lower than 6h-PMI group. When we used epileptic rats (chronic group), the RT-qPCR results showed higher Tnf-α only when compared to 6h-PMI group. In conclusion, our study demonstrates that PMI influences gene transcription and can mask changes in gene transcription seen during epileptogenesis in the PILO-SE model. Thus, to avoid erroneous conclusions, we strongly recommend that researchers account for changes in postmortem gene expression in their experimental design.


Assuntos
Artefatos , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/patologia , Perfilação da Expressão Gênica/métodos , Hipocampo/metabolismo , Hipocampo/patologia , Animais , Autopsia , Masculino , Ratos , Ratos Wistar
3.
PLoS One ; 10(10): e0141121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26473354

RESUMO

The molecular mechanisms underlying epileptogenesis have been widely investigated by differential gene expression approach, especially RT-qPCR methodology. However, controversial findings highlight the occurrence of unpredictable sources of variance in the experimental designs. Here, we investigated if diurnal rhythms of transcript's levels may impact on differential gene expression analysis in hippocampus of rats with experimental epilepsy. For this, we have selected six core clock genes (Per1, Per3, Bmal1, Clock, Cry1 and Cry2), whose rhythmic expression pattern in hippocampus had been previously reported. Initially, we identified Tubb2a/Rplp1 and Tubb2a/Ppia as suitable normalizers for circadian studies in hippocampus of rats maintained to 12:12 hour light:dark (LD) cycle. Next, we confirmed the temporal profiling of Per1, Per3, Bmal1, Cry1 and Cry2 mRNA levels in the hippocampus of naive rats by both Acrophase and CircWave statistical tests for circadian analysis. Finally, we showed that temporal differences of sampling can change experimental results for Per1, Per3, Bmal1, Cry1 and Cry2, but not for Clock, which was consistently decreased in rats with epilepsy in all comparison to the naive group. In conclusion, our study demonstrates it is mandatory to consider diurnal oscillations, in order to avoid erroneous conclusions in gene expression analysis in hippocampus of rats with epilepsy. Investigators, therefore, should be aware that genes with circadian expression could be out of phase in different animals of experimental and control groups. Moreover, our results indicate that a sub-expression of Clock may be involved in epileptogenicity, although the functional significance of this remains to be investigated.


Assuntos
Ritmo Circadiano/genética , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Pilocarpina/farmacologia , Transcriptoma/fisiologia , Animais , Escuridão , Epilepsia do Lobo Temporal/induzido quimicamente , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA