Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649242

RESUMO

Patterns and morphology develop in living systems such as embryos in response to chemical signals. To understand and exploit the interplay of chemical reactions with mechanical transformations, chemomechanical polymer systems have been synthesized by attaching chemicals into hydrogels. In this work, we design autonomous responsive elastic shells that undergo morphological changes induced by chemical reactions. We couple the local mechanical response of the gel with the chemical processes on the shell. This causes swelling and deswelling of the gel, generating diverse morphological changes, including periodic oscillations. We further introduce a mechanical instability and observe buckling-unbuckling dynamics with a response time delay. Moreover, we investigate the mechanical feedback on the chemical reaction and demonstrate the dynamic patterns triggered by an initial deformation. We show the chemical characteristics that account for the shell morphology and discuss the future designs for autonomous responsive materials.

2.
Soft Matter ; 19(13): 2297-2310, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36857712

RESUMO

Many motile microorganisms communicate with each other and their environments via chemical signaling which leads to long-range interactions mediated by self-generated chemical gradients. However, consequences of the interplay between crowding and chemotactic interactions on their collective behavior remain poorly understood. In this work, we use Brownian dynamics simulations to investigate the effect of packing fraction on the formation of non-equilibrium structures in a monolayer of diffusiophoretic self-propelled colloids as a model for chemically active particles. Focusing on the case when a chemical field induces attractive positional and repulsive orientational interactions, we explore dynamical steady-states of active colloids of varying packing fractions and degrees of motility. In addition to collapsed, active gas, and dynamical clustering steady-states reported earlier for low packing fractions, a new phase-separated state emerges. The phase separation results from a competition between long-range diffusiophoretic interactions and motility and is observed at moderate activities and a wide range of packing fractions. Our analysis suggests that the fraction of particles in the largest cluster is a suitable order parameter for capturing the transition from an active gas and dynamical clustering states to a phase-separated state.

3.
ACS Nano ; 15(9): 14804-14812, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34402621

RESUMO

Self-organized shells are fundamental in biological compartmentalization. They protect genomic material or enclose enzymes to aid the metabolic process. Studies of crystalline shells have shown the importance of the mechanical properties of building units in the shell morphology. However, the mechanism underlying the morphology of multicomponent assemblies is still poorly understood. Here, we analyze multicomponent closed shells that have different mechanical properties. By minimizing elastic energy, we show that heterogeneous bending rigidities regulate the surface pattern into circular, spikes, and ridge shapes. Interestingly, our continuum elasticity model recovers the patterns that have been proposed in bacterial microcompartments (BMCs), which are self-organized protein shells that aid the breakdown of complex molecules and allow bacteria to survive in hostile environments. In addition, our work elucidates the principles of pattern formation that can be used to design and engineer multicomponent microcompartments with a specific surface distribution of the components.


Assuntos
Compartimento Celular , Complexos Multiproteicos , Bactérias , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA