Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Faraday Discuss ; 250(0): 377-389, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37965928

RESUMO

Poly(nickel-benzene-1,2,4,5-tetrakis(thiolate)) (Ni-btt), an organometallic coordination polymer (OMCP) characterized by the coordination between benzene-1,2,4,5-tetrakis(thiolate) (btt) and Ni2+ ions, has been recognized as a promising p-type thermoelectric material. In this study, we employed a constitutional isomer based on benzene-1,2,3,4-tetrakis(thiolate) (ibtt) to generate the corresponding isomeric polymer, poly(nickel-benzene-1,2,3,4-tetrakis(thiolate)) (Ni-ibtt). Comparative analysis of Ni-ibtt and Ni-btt reveals several common infrared (IR) and Raman features attributed to their similar square-planar nickel-sulfur (Ni-S) coordination. Nevertheless, these two polymer isomers exhibit substantially different backbone geometries. Ni-btt possesses a linear backbone, whereas Ni-ibtt exhibits a more undulating, zig-zag-like structure. Consequently, Ni-ibtt demonstrates slightly higher solubility and an increased bandgap in comparison to Ni-btt. The most noteworthy dissimilarity, however, manifests in their thermoelectric properties. While Ni-btt exhibits p-type behavior, Ni-ibtt demonstrates n-type carrier characteristics. This intriguing divergence prompted further investigation into the influence of OMCP backbone geometry on the electronic structure and, particularly, the thermoelectric properties of these materials.

2.
Inorg Chem ; 59(20): 15384-15393, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32991153

RESUMO

A series of aluminate-based oxyhydrides, Sr3-xAxAlO4H (A = Ca, Ba; x = 0, 1), has been synthesized by high-temperature reaction of oxide and hydride precursors under a H2 atmosphere. Their crystal structures determined via X-ray and neutron powder diffraction are isostructural with tetragonal Sr3AlO4F (space group I4/mcm), consisting of (Sr1-x/3Ax/3)2H layers and isolated AlO4 tetrahedra. Rietveld refinement based on the diffraction patterns and bond-valence-sum analysis show that Ba preferentially occupies the 10-coordinated Sr1 sites, while Ca strongly prefers to occupy the 8-coordinated Sr2 sites. Luminescence owing to the 4f-5d transition of Eu2+ or Ce3+ was observed from Eu- and Ce-doped samples, Sr3-x-yAxByAlO4H (A = Ca, Ba; B = Eu, Ce; x = 0, 1, y = 0.02), under excitation of near-ultraviolet light. Compared with its fluoride analogue, Sr3AlO4H:Ce3+ shows red shifts of both the excitation and emission bands, which is consistent with the reported hydride-based phosphors and can be explained by the covalency of the hydride ligands. The observed luminescence spectra can be decomposed into two sets of sub-bands corresponding to Ce3+ centers occupying Sr1 and Sr2 sites with distinctly different Stokes shifts (1.27 and 0.54 eV, respectively), as suggested by the results of constrained density functional theory (cDFT). The cDFT results also suggest that the large shift for Ce3+ at Sr1 is induced by large distortion of the coordinated structure with shortening of the H-Ce bond in the excited state. The current findings expand the class of oxyhydride materials and show the potential of hydride-based phosphors for optical applications.

3.
Proc Natl Acad Sci U S A ; 114(22): E4354-E4359, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507123

RESUMO

In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1-x D x , and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 µB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.

4.
J Am Chem Soc ; 141(51): 20344-20353, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31755269

RESUMO

Mixed anionic materials such as oxyhydrides and oxynitrides have recently attracted significant attention due to their unique properties, such as fast hydride ion conduction, enhanced ferroelectrics, and catalytic activity. However, high temperature (≥800 °C) and/or complicated processes are required for the synthesis of these compounds. Here we report that a novel perovskite oxynitride-hydride, BaCeO3-xNyHz, can be directly synthesized by the reaction of CeO2 with Ba(NH2)2 at low temperatures (300-600 °C). BaCeO3-xNyHz, with and without transition metal nanoparticles, functions as an efficient catalyst for ammonia synthesis through the lattice N3- and H- ion-mediated Mars-van Krevelen mechanism, while ammonia synthesis occurs over conventional catalysts through a Langmuir-Hinshelwood mechanism with high energy barriers (85-121 kJ mol-1). As a consequence, the unique reaction mechanism leads to enhancement of the activity of BaCeO3-based catalysts by a factor of 8-218 and lowers the activation energy (46-62 kJ mol-1) for ammonia synthesis. Furthermore, isotopic experiments reveal that this catalyst shifts the rate-determining step for ammonia synthesis from N2 dissociation to N-H bond formation.

5.
Nature ; 494(7437): 336-40, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23364689

RESUMO

Recent studies suggest that electrides--ionic crystals in which electrons serve as anions--are not exceptional materials but rather a generalized form, particularly under high pressure. The topology of the cavities confining anionic electrons determines their physical properties. At present, reported confining sites consist only of zero-dimensional cavities or weakly linked channels. Here we report a layered-structure electride of dicalcium nitride, Ca(2)N, which possesses two-dimensionally confined anionic electrons whose concentration agrees well with that for the chemical formula of [Ca(2)N](+)·e(-). Two-dimensional transport characteristics are demonstrated by a high electron mobility (520 cm(2) V(-1) s(-1)) and long mean scattering time (0.6 picoseconds) with a mean free path of 0.12 micrometres. The quadratic temperature dependence of the resistivity up to 120 Kelvin indicates the presence of an electron-electron interaction. A striking anisotropic magnetoresistance behaviour with respect to the direction of magnetic field (negative for the field perpendicular to the conducting plane and positive for the field parallel to it) is observed, confirming diffusive two-dimensional transport in dense electron layers. Additionally, band calculations support confinement of anionic electrons within the interlayer space, and photoemission measurements confirm anisotropic low work functions of 3.5 and 2.6 electronvolts, revealing the loosely bound nature of the anionic electrons. We conclude that Ca(2)N is a two-dimensional electride in terms of [Ca(2)N](+)·e(-).

6.
Opt Express ; 26(19): 24784-24791, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469590

RESUMO

We report novel white light-emitting diode (WLED) devices that improve emission color uniformity. The WLEDs consist of a violet chip and a mixed-phosphor layer of three phosphors previously developed by us. It is found that each phosphor does not reabsorb the luminescence from the other phosphors; consequently, the emission color of the WLEDs does not get affected by the mounted quantity of phosphors and/or the variation in chip emission wavelength. Furthermore, an encapsulated WLED with a hemispherical dome-shaped mixed-phosphor layer enables an area to be irradiated with uniform color, producing an excellent color rendering index and improved luminous flux because of the reduced inelastic scattering loss in the phosphor layer.

7.
Inorg Chem ; 56(1): 566-572, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27983823

RESUMO

The positively charged cage framework of the natural mineral mayenite, which enables various species with negative charge to be stabilized, is one of the key structures to provide the new functionalities exploited in applications. Here we report the structural and magnetic properties of recently found eltyubyuite, Ca12Fe10Si4O32Cl6, which is the first compound bearing a transition metal oxide as a main constituent in the mayenite-type structure. From neutron powder diffraction measurements at T = 20 K and the low temperature Mössbauer measurement, we determined the magnetic structure of eltyubyuite to be a ferrimagnet with oppositely aligned magnetic moments of +3.17(3) and -3.05(8) µB in two tetrahedral Fe sites with different oxygen ligands, all bridging oxygens or mixed bridging and nonbridging oxygens. As far as is known, this result is likely to be a first example showing ferrimagnetism stemming from only tetrahedral Fe3+ ions. The reduced magnetic moment per Fe3+ and the resultant small net moment per unit cell of 22 µB at µ0H = 5 T and T = 15 K are attributed to strong covalency in much shorter Fe-O bonds in the FeO4 tetrahedra.

8.
Angew Chem Int Ed Engl ; 56(34): 10135-10139, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28467629

RESUMO

The electronic structures of the antifluorite-type compound Mg2 Si is described in which a sublattice of short cation-cation contacts creates a very low conduction band minimum. Since Mg2 Si shows n-type conductivity without intentional carrier doping, the present result indicates that the cage defined by the cations plays critical roles in carrier transport similar to those of inorganic electrides, such as 12 CaO⋅7 Al2 O3 :e- and Ca2 N. A distinct difference in the location of conduction band minimum between Mg2 Si and the isostructural phase Na2 S is explained in terms of factors such as the differing interaction strengths of the Si/S 3s orbitals with the cation levels, with the more core-like character of the S 3s leading to a relatively low conduction band energy at the Γ point. Based on these results and previous research on electrides, approaches can be devised to control the energy levels of cation sublattices in semiconductors.

9.
Inorg Chem ; 55(17): 8833-8, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27512817

RESUMO

In view of the strong electron-donating nature of H(-) and extensive vacancy formation in metals by hydrogen insertion, a series of LnH2+x (Ln = La, Ce, or Y) compounds with fluorite-type structures were verified to be the first hydride-based electride, where itinerant electrons populating the cage are surrounded by H(-) anions. The electron transfer into the cage probably originates from Ln-cage covalent interaction. To the best of our knowledge, anion-rich electrides are extremely rare, and a key requirement for their formation is that the cage site is not occupied by lone pair electrons of the adjacent ions. In the case of LnH2, the cage site is surrounded by eight H(-) anions with isotopic electronic character caused by the lack of mixing of H p-orbital character. Notably, Ru-loaded LnH2+x electride powders synthesized by hydrogen embrittlement (Ln = La or Ce) were found to work as efficient catalysts for ammonia synthesis at ambient pressure, without showing serious signs of hydrogen poisoning. There are several possible origins of the observed high catalytic activity in the hydride promotors: the small work function of LnH2+x derived from the covalent interaction between Ln cation and the H(-) σ donor, and the formation of Ln nitride during catalytic reaction.

10.
Inorg Chem ; 54(23): 11567-73, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26587763

RESUMO

We investigated the preferred electron dopants at the oxygen sites of 1111-type SmFeAsO by changing the atmospheres around the precursor with the composition of Sm:Fe:As:O = 1:1:1:1 - x in high-pressure synthesis. Under H2O and H2 atmospheres, hydrogens derived from H2O or H2 molecules were introduced into the oxygen sites as a hydride ion, and SmFeAsO(1-x)Hx was obtained. However, when the H2O and H2 sources were removed from the synthetic process, nearly stoichiometric SmFeAsO was obtained and the maximum amount of oxygen vacancies introduced remained x = 0.05(4). Density functional theory calculations indicated that substitution of hydrogen in the form of H(-) is more stable than the formation of an oxygen vacancy at the oxygen site of SmFeAsO. These results strongly imply that oxygen-deficient SmFeAsO(1-x) reported previously is SmFeAsO(1-x)Hx with hydride ion incorporated unintentionally during high-pressure synthesis.

11.
Philos Trans A Math Phys Eng Sci ; 373(2037)2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25666076

RESUMO

S-band metals such as alkali and alkaline earth metals do not undergo a superconducting transition (SCT) at ambient pressure, but their high-pressure phases do. By contrast, room-temperature stable electride [Ca(24)Al(28)O(64)](4+)⋅4e(-) (C12A7:e(-)) in which anionic electrons in the crystallographic sub-nanometer-size cages have high s-character exhibits SCT at 0.2-0.4 K at ambient pressure. In this paper, we report that crystal and electronic structures of C12A7:e(-) are close to those of the high-pressure superconducting phase of alkali and alkaline earth metals and the SCT of both materials is induced when electron nature at Fermi energy (EF) switches from s- to sd-hybridized state.

12.
J Am Chem Soc ; 136(42): 14959-65, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25255380

RESUMO

ß-BaZn2As2 is known to be a p-type semiconductor with the layered crystal structure similar to that of LaZnAsO, leading to the expectation that ß-BaZn2As2 and LaZnAsO have similar bandgaps; however, the bandgap of ß-BaZn2As2 (previously reported value ~0.2 eV) is 1 order of magnitude smaller than that of LaZnAsO (1.5 eV). In this paper, the reliable bandgap value of ß-BaZn2As2 is determined to be 0.23 eV from the intrinsic region of the temperature dependence of electrical conductivity. The origins of this narrow bandgap are discussed based on the chemical bonding nature probed by 6 keV hard X-ray photoemission spectroscopy, hybrid density functional calculations, and the ligand theory. One origin is the direct As-As hybridization between adjacent [ZnAs] layers, which leads to a secondary splitting of As 4p levels and raises the valence band maximum. The other is that the nonbonding Ba 5d(x(2)-y(2)) orbitals form an unexpectedly deep conduction band minimum (CBM) in ß-BaZn2As2 although the CBM of LaZnAsO is formed mainly of Zn 4s. These two origins provide a quantitative explanation for the bandgap difference between ß-BaZn2As2 and LaZnAsO.

13.
J Am Chem Soc ; 136(20): 7221-4, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24802944

RESUMO

Compositionally tunable vanadium oxyhydrides Sr2VO(4-x)H(x) (0 ≤ x ≤ 1.01) without considerable anion vacancy were synthesized by high-pressure solid-state reaction. The crystal structures and their properties were characterized by powder neutron diffraction, synchrotron X-ray diffraction, thermal desorption spectroscopy, and first-principles density functional theory (DFT) calculations. The hydrogen anions selectively replaced equatorial oxygen sites in the VO6 layers via statistical substitution of hydrogen in the low x region (x < 0.2). A new orthorhombic phase (Immm) with an almost entirely hydrogen-ordered structure formed from the K2NiF4-type tetragonal phase with x > 0.7. Based on the DFT calculations, the degree of oxygen/hydrogen anion ordering is strongly correlated with the bonding interaction between vanadium and the ligands.

14.
Phys Rev Lett ; 113(2): 027002, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062222

RESUMO

We present a theoretical understanding of the superconducting phase diagram of the electron-doped iron pnictides. We show that, besides the Fermi surface nesting, a peculiar motion of electrons, where the next nearest neighbor (diagonal) hoppings between iron sites dominate over the nearest neighbor ones, plays an important role in the enhancement of the spin fluctuation and thus superconductivity. In the highest T(c) materials, the crossover between the Fermi surface nesting and this "prioritized diagonal motion" regime occurs smoothly with doping, while in relatively low T(c) materials, the two regimes are separated and therefore results in a double dome T(c) phase diagram.

15.
Inorg Chem ; 53(19): 10347-58, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25210807

RESUMO

High-throughput ab initio screening of approximately 34000 materials in the Materials Project was conducted to identify two-dimensional (2D) electride materials, which are composed of cationic layers and anionic electrons confined in a 2D empty space. The screening was based on three indicators: (1) a positive total formal charge per formula unit; (2) layered structures for two-dimensionality; (3) empty spaces between the layer units. Three nitrides, Ca2N, Sr2N, and Ba2N, and the carbide Y2C were identified as 2D electrides, where Ca2N is the only experimentally confirmed 2D electride (Lee, K.; et al. Nature 2013, 494, 336-341). Electron density analysis using ionic radii revealed a smaller number of anionic electrons in Y2C than those in the three nitrides as a result of the partial occupation of the anionic electrons in the d orbitals of Y. In addition, no candidates were identified from the p-block elements, and thus the ab initio screening indicates that the s-block elements (i.e., alkali or alkaline-earth metals) are highly preferable as cation elements. To go beyond the database screening, a tailored modeling was conducted to determine unexplored compounds including the s-block elements that are suitable for 2D electrides. The tailored modeling found that (1) K2Cl, K2Br, Rb2Cl, and Rb2Br dialkali halides are highly plausible candidates, (2) Li2F and Na2Cl dialkali halides are highly challenging candidates, and (3) the Cs2O(1-x)F(x) halogen-doped dialkali oxide is a promising candidate.

16.
Adv Sci (Weinh) ; 11(10): e2307058, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145354

RESUMO

High energy-conversion efficiency (ZT) of thermoelectric materials has been achieved in heavy metal chalcogenides, but the use of toxic Pb or Te is an obstacle for wide applications of thermoelectricity. Here, high ZT is demonstrated in toxic-element free Ba3 BO (B = Si and Ge) with inverse-perovskite structure. The negatively charged B ion contributes to hole transport with long carrier life time, and their highly dispersive bands with multiple valley degeneracy realize both high p-type electronic conductivity and high Seebeck coefficient, resulting in high power factor (PF). In addition, extremely low lattice thermal conductivities (κlat ) 1.0-0.4 W m-1  K-1 at T = 300-600 K are observed in Ba3 BO. Highly distorted O-Ba6 octahedral framework with weak ionic bonds between Ba with large mass and O provides low phonon velocities and strong phonon scattering in Ba3 BO. As a consequence of high PF and low κlat , Ba3 SiO (Ba3 GeO) exhibits rather high ZT = 0.16-0.84 (0.35-0.65) at T = 300-623 K (300-523 K). Finally, based on first-principles carrier and phonon transport calculations, maximum ZT is predicted to be 2.14 for Ba3 SiO and 1.21 for Ba3 GeO at T = 600 K by optimizing hole concentration. Present results propose that inverse-perovskites would be a new platform of environmentally-benign high-ZT thermoelectric materials.

17.
Inorg Chem ; 52(23): 13363-8, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24205815

RESUMO

We report the synthesis, structure, and electromagnetic properties of Cr-based layered oxyarsenides LnCrAsO (Ln = La, Ce, Pr, and Nd) with a ZrCuSiAs-type structure. All LnCrAsO samples showed metallic electronic conduction. Electron doping in LaCrAsO by Mn-substitution for the Cr sites gave rise to a metal-insulator transition. Analysis of powder neutron diffraction data revealed that LaCrAsO had G-type antiferromagnetic (AFM) ordering, i.e., a checkerboard-type AFM ordering in the CrAs plane and antiparallel spin coupling between the adjacent CrAs planes, at 300 K with a large spin moment of 1.57 µB along the c axis. The magnetic susceptibility of LaCrAsO was very small (on the order of 10(-3) emu/mol) and showed a broad hump at ∼550 K. First-principles density functional theory calculations of LaCrAsO explained its crystal structure and metallic nature well, but could not replicate the antiparallel spin coupling between the CrAs layers. The electronic structure of LaCrAsO is discussed with regard to those of related compounds LaFeAsO and LaMnAsO.

18.
J Am Chem Soc ; 134(49): 20001-4, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23186075

RESUMO

We have established a well-defined dome-shaped T(c) curve in Ir(0.94-x)Rh(x)Se(2) superconductors. The maximum T(c)(onset) of 9.6 K was obtained at x = 0.36, at which the Se-Se separation in the dimer anion is the longest. Simultaneously, the destabilization of Se-Se dimers accompanied by partial electron transfer from the Ir/Rh to the chalcogenide ions resulted in the emergence of optimal T(c).

19.
J Am Chem Soc ; 134(28): 11687-94, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22747364

RESUMO

Stimulated by the discovery of the iron oxypnictide superconductor with ZrCuSiAs-type structure in 2008, extensive exploration of its isostructural and isoelectronic compounds has started. These compounds, including oxides, fluorides, and hydrides, can all be simply recognized as valence compounds for which the octet rule is valid. We report herein the first example of a ZrCuSiAs-type hydride, CaNiGeH, which violates the octet rule. This hydride was synthesized by hydrogenation of the CeFeSi-type compound CaNiGe under pressurized hydrogen. Powder diffraction and theoretical simulation confirm that H enters into the interstitial position of the Ca(4) tetrahedron, leading to notable anisotropic expansion of the unit cell along the c axis. Density functional theory calculations indicate the modification of the chemical bonding and formation of ionic Ca-H bond as a result of hydrogen insertion. Furthermore, CaNiGeH shows Pauli paramagnetism and metallic conduction similar to that of CaNiGe, but its carrier type changes to hole and the carrier density is drastically reduced as compared to CaNiGe. Mn-doping at the Ni site introduces magnetism to both the parent compound and the hydride. The measurement demonstrates that hydrogenation of CaNi(1-x)Mn(x)Ge reduces ferromagnetic ordering of Mn ions and induces huge magnetic hysteresis, whereas the spin glass state observed for the parent compound is preserved in the hydride. The hydrogenation-induced changes in the electric and magnetic properties are interpreted in terms of development of two-dimensionality in crystal structure as well as electronic state.

20.
Phys Rev Lett ; 109(21): 217002, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215608

RESUMO

We report superconductivity in defective pyrite-type iridium chalcogenides Ir(x)Ch2 (Ch = Se and Te). Maximum values of T(c) of 6.4 K for Ir(0.91)Se(2) and 4.7 K for Ir(0.93)Te(2) were observed. It was found that Ir(0.75)Ch(2) (Ir(3)Ch(8)) is close to the boundary between metallic and insulating states and Ir(x)Ch(2) systems undergo nonmetal to metal transitions as x increases. On the basis of density functional theory calculations and the observed large variation in the Ch-Ch distance with x, we suggest that Ir(0.75)Ch(2) (Ir(3)Ch(8)) is the parent compound for the present superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA