Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Numer Method Biomed Eng ; 39(1): e3668, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509708

RESUMO

Information about respiratory mechanics such as resistance, elastance, and muscular pressure is important to mitigate ventilator-induced lung injury. Particularly during pressure support ventilation, the available options to quantify breathing effort and calculate respiratory system mechanics are often invasive or complex. We herein propose a robust and flexible estimation of respiratory effort better than current methods. We developed a method for non-invasively estimating breathing effort using only flow and pressure signals. Mixed-integer quadratic programming (MIQP) was employed, and the binary variables were the switching moments of the respiratory effort waveform. Mathematical constraints, based on ventilation physiology, were set for some variables to restrict feasible solutions. Simulated and patient data were used to verify our method, and the results were compared to an established estimation methodology. Our algorithm successfully estimated the respiratory effort, resistance, and elastance of the respiratory system, resulting in more robust performance and faster solver times than a previously proposed algorithm that used quadratic programming (QP) techniques. In a numerical simulation benchmark, the worst-case errors for resistance and elastance were 25% and 23% for QP versus <0.1% and <0.1% for MIQP, whose solver times were 4.7 s and 0.5 s, respectively. This approach can estimate several breathing effort profiles and identify the respiratory system's mechanical properties in invasively ventilated critically ill patients.


Assuntos
Respiração com Pressão Positiva , Respiração , Humanos , Respiração com Pressão Positiva/métodos , Respiração Artificial , Mecânica Respiratória/fisiologia , Algoritmos
3.
Comput Med Imaging Graph ; 51: 1-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27065241

RESUMO

Automatic anatomy recognition (AAR) methodologies for a body region require detailed understanding of the morphology, architecture, and geographical layout of the organs within the body region. The aim of this paper was to quantitatively characterize the normal anatomy of the thoracic region for AAR. Contrast-enhanced chest CT images from 41 normal male subjects, each with 11 segmented objects, were considered in this study. The individual objects were quantitatively characterized in terms of their linear size, surface area, volume, shape, CT attenuation properties, inter-object distances, size and shape correlations, size-to-distance correlations, and distance-to-distance correlations. A heat map visualization approach was used for intuitively portraying the associations between parameters. Numerous new observations about object geography and relationships were made. Some objects, such as the pericardial region, vary far less than others in size across subjects. Distance relationships are more consistent when involving an object such as trachea and bronchi than other objects. Considering the inter-object distance, some objects have a more prominent correlation, such as trachea and bronchi, right and left lungs, arterial system, and esophagus. The proposed method provides new, objective, and usable knowledge about anatomy whose utility in building body-wide models toward AAR has been demonstrated in other studies.


Assuntos
Radiografia Torácica , Tórax/anatomia & histologia , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Humanos , Masculino , Pessoa de Meia-Idade
4.
Med Image Anal ; 18(5): 752-71, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24835182

RESUMO

To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy. In Step (c), we explicitly encode object size and positional relationships into the hierarchy and subsequently exploit this information in object recognition in Step (d) and delineation in Step (e). Modality-independent and dependent aspects are carefully separated in model encoding. At the model building stage, a learning process is carried out for rehearsing an optimal threshold-based object recognition method. The recognition process in Step (d) starts from large, well-defined objects and proceeds down the hierarchy in a global to local manner. A fuzzy model-based version of the IRFC algorithm is created by naturally integrating the fuzzy model constraints into the delineation algorithm. The AAR system is tested on three body regions - thorax (on CT), abdomen (on CT and MRI), and neck (on MRI and CT) - involving a total of over 35 organs and 130 data sets (the total used for model building and testing). The training and testing data sets are divided into equal size in all cases except for the neck. Overall the AAR method achieves a mean accuracy of about 2 voxels in localizing non-sparse blob-like objects and most sparse tubular objects. The delineation accuracy in terms of mean false positive and negative volume fractions is 2% and 8%, respectively, for non-sparse objects, and 5% and 15%, respectively, for sparse objects. The two object groups achieve mean boundary distance relative to ground truth of 0.9 and 1.5 voxels, respectively. Some sparse objects - venous system (in the thorax on CT), inferior vena cava (in the abdomen on CT), and mandible and naso-pharynx (in neck on MRI, but not on CT) - pose challenges at all levels, leading to poor recognition and/or delineation results. The AAR method fares quite favorably when compared with methods from the recent literature for liver, kidneys, and spleen on CT images. We conclude that separation of modality-independent from dependent aspects, organization of objects in a hierarchy, encoding of object relationship information explicitly into the hierarchy, optimal threshold-based recognition learning, and fuzzy model-based IRFC are effective concepts which allowed us to demonstrate the feasibility of a general AAR system that works in different body regions on a variety of organs and on different modalities.


Assuntos
Algoritmos , Lógica Fuzzy , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Imagem Corporal Total/métodos , Inteligência Artificial , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
5.
Ultrasound Med Biol ; 38(8): 1414-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22698511

RESUMO

Ultrasonography has an inherent noise pattern, called speckle, which is known to hamper object recognition for both humans and computers. Speckle noise is produced by the mutual interference of a set of scattered wavefronts. Depending on the phase of the wavefronts, the interference may be constructive or destructive, which results in brighter or darker pixels, respectively. We propose a filter that minimizes noise fluctuation while simultaneously preserving local gray level information. It is based on steps to attenuate the destructive and constructive interference present in ultrasound images. This filter, called interference-based speckle filter followed by anisotropic diffusion (ISFAD), was developed to remove speckle texture from B-mode ultrasound images, while preserving the edges and the gray level of the region. The ISFAD performance was compared with 10 other filters. The evaluation was based on their application to images simulated by Field II (developed by Jensen et al.) and the proposed filter presented the greatest structural similarity, 0.95. Functional improvement of the segmentation task was also measured, comparing rates of true positive, false positive and accuracy. Using three different segmentation techniques, ISFAD also presented the best accuracy rate (greater than 90% for structures with well-defined borders).


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Ultrassonografia/métodos , Anisotropia , Difusão , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA