Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Bioinformatics ; 17 Suppl 1: 6, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26818556

RESUMO

BACKGROUND: Thyroid carcinomas are known to harbor oncogenic driver mutations and advances in sequencing technology now allow the detection of these in fine needle aspiration biopsies (FNA). Recent work by The Cancer Genome Atlas (TCGA) Research Network has expanded the number of genetic alterations detected in papillary thyroid carcinomas (PTC). We sought to investigate the prevalence of these and other genetic alterations in diverse subtypes of thyroid nodules beyond PTC, including a variety of samples with benign histopathology. This is the first clinical evaluation of a large panel of TCGA-reported genomic alterations in thyroid FNAs. RESULTS: In FNAs, genetic alterations were detected in 19/44 malignant samples (43% sensitivity) and in 7/44 histopathology benign samples (84% specificity). Overall, after adding a cohort of tissue samples, 38/76 (50%) of histopathology malignant samples were found to harbor a genetic alteration, while 15/75 (20%) of benign samples were also mutated. The most frequently mutated malignant subtypes were medullary thyroid carcinoma (9/12, 75%) and PTC (14/30, 47%). Additionally, follicular adenoma, a benign subtype of thyroid neoplasm, was also found to harbor mutations (12/29, 41%). Frequently mutated genes in malignant samples included BRAF (20/76, 26%) and RAS (9/76, 12%). Of the TSHR variants detected, (6/7, 86%) were in benign nodules. In a direct comparison of the same FNA also tested by an RNA-based gene expression classifier (GEC), the sensitivity of genetic alterations alone was 42%, compared to the 91% sensitivity achieved by the GEC. The specificity based only on genetic alterations was 84%, compared to 77% specificity with the GEC. CONCLUSIONS: While the genomic landscape of all thyroid neoplasm subtypes will inevitably be elucidated, caution should be used in the early adoption of published mutations as the sole predictor of malignancy in thyroid. The largest set of such mutations known to date detects only a portion of thyroid carcinomas in preoperative FNAs in our cohort and thus is not sufficient to rule out cancer. Due to the finding that variants are also found in benign nodules, testing only GEC suspicious nodules may be helpful in avoiding false positives and altering the extent of treatment when selected mutations are found.


Assuntos
Adenocarcinoma Folicular/diagnóstico , Carcinoma Neuroendócrino/diagnóstico , Carcinoma/diagnóstico , Fusão Gênica/genética , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias da Glândula Tireoide/diagnóstico , Adenocarcinoma Folicular/genética , Biomarcadores Tumorais/genética , Biópsia por Agulha Fina , Carcinoma/genética , Carcinoma Neuroendócrino/genética , Carcinoma Papilar , Humanos , Estudos Prospectivos , Curva ROC , Análise de Sequência de RNA/métodos , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/genética
2.
Bioinformatics ; 22(17): 2122-8, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16845142

RESUMO

MOTIVATION: The identification of signatures of positive selection can provide important insights into recent evolutionary history in human populations. Current methods mostly rely on allele frequency determination or focus on one or a small number of candidate chromosomal regions per study. With the availability of large-scale genotype data, efficient approaches for an unbiased whole genome scan are becoming necessary. METHODS: We have developed a new method, the whole genome long-range haplotype test (WGLRH), which uses genome-wide distributions to test for recent positive selection. Adapted from the long-range haplotype (LRH) test, the WGLRH test uses patterns of linkage disequilibrium (LD) to identify regions with extremely low historic recombination. Common haplotypes with significantly longer than expected ranges of LD given their frequencies are identified as putative signatures of recent positive selection. In addition, we have also determined the ancestral alleles of SNPs by genotyping chimpanzee and gorilla DNA, and have identified SNPs where the non-ancestral alleles have risen to extremely high frequencies in human populations, termed 'flipped SNPs'. Combining the haplotype test and the flipped SNPs determination, the WGLRH test serves as an unbiased genome-wide screen for regions under putative selection, and is potentially applicable to the study of other human populations. RESULTS: Using WGLRH and high-density oligonucleotide arrays interrogating 116 204 SNPs, we rapidly identified putative regions of positive selection in three populations (Asian, Caucasian, African-American), and extended these observations to a fourth population, Yoruba, with data obtained from the International HapMap consortium. We mapped significant regions to annotated genes. While some regions overlap with genes previously suggested to be under positive selection, many of the genes have not been previously implicated in natural selection and offer intriguing possibilities for further study. AVAILABILITY: the programs for the WGLRH algorithm are freely available and can be downloaded at http://www.affymetrix.com/support/supplement/WGLRH_program.zip.


Assuntos
Evolução Biológica , Mapeamento Cromossômico/métodos , Variação Genética/genética , Genética Populacional , Genoma Humano/genética , Impressão Genômica/genética , Seleção Genética , Algoritmos , Animais , Evolução Molecular , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Software
3.
Nat Biotechnol ; 21(10): 1233-7, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12960966

RESUMO

Genetic studies aimed at understanding the molecular basis of complex human phenotypes require the genotyping of many thousands of single-nucleotide polymorphisms (SNPs) across large numbers of individuals. Public efforts have so far identified over two million common human SNPs; however, the scoring of these SNPs is labor-intensive and requires a substantial amount of automation. Here we describe a simple but effective approach, termed whole-genome sampling analysis (WGSA), for genotyping thousands of SNPs simultaneously in a complex DNA sample without locus-specific primers or automation. Our method amplifies highly reproducible fractions of the genome across multiple DNA samples and calls genotypes at >99% accuracy. We rapidly genotyped 14,548 SNPs in three different human populations and identified a subset of them with significant allele frequency differences between groups. We also determined the ancestral allele for 8,386 SNPs by genotyping chimpanzee and gorilla DNA. WGSA is highly scaleable and enables the creation of ultrahigh density SNP maps for use in genetic studies.


Assuntos
Algoritmos , DNA/química , DNA/genética , Perfilação da Expressão Gênica/métodos , Genoma Humano , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Frequência do Gene/genética , Genótipo , Humanos , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Alinhamento de Sequência/métodos , Homologia de Sequência do Ácido Nucleico
4.
Hum Genomics ; 2(2): 81-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16004724

RESUMO

Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican), we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.


Assuntos
Variação Genética , Genética Médica , Polimorfismo de Nucleotídeo Único , Cromossomos Humanos X , Emigração e Imigração , Genótipo , Humanos , Modelos Genéticos , População , Grupos Raciais/genética
5.
Genome Biol ; 10(11): R125, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19900272

RESUMO

BACKGROUND: Copy number variants (CNVs) account for a large proportion of genetic variation in the genome. The initial discoveries of long (> 100 kb) CNVs in normal healthy individuals were made on BAC arrays and low resolution oligonucleotide arrays. Subsequent studies that used higher resolution microarrays and SNP genotyping arrays detected the presence of large numbers of CNVs that are < 100 kb, with median lengths of approximately 10 kb. More recently, whole genome sequencing of individuals has revealed an abundance of shorter CNVs with lengths < 1 kb. RESULTS: We used custom high density oligonucleotide arrays in whole-genome scans at approximately 200-bp resolution, and followed up with a localized CNV typing array at resolutions as close as 10 bp, to confirm regions from the initial genome scans, and to detect the occurrence of sample-level events at shorter CNV regions identified in recent whole-genome sequencing studies. We surveyed 90 Yoruba Nigerians from the HapMap Project, and uncovered approximately 2,700 potentially novel CNVs not previously reported in the literature having a median length of approximately 3 kb. We generated sample-level event calls in the 90 Yoruba at nearly 9,000 regions, including approximately 2,500 regions having a median length of just approximately 200 bp that represent the union of CNVs independently discovered through whole-genome sequencing of two individuals of Western European descent. Event frequencies were noticeably higher at shorter regions < 1 kb compared to longer CNVs (> 1 kb). CONCLUSIONS: As new shorter CNVs are discovered through whole-genome sequencing, high resolution microarrays offer a cost-effective means to detect the occurrence of events at these regions in large numbers of individuals in order to gain biological insights beyond the initial discovery.


Assuntos
Dosagem de Genes , Genômica/métodos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Cromossomos Artificiais Bacterianos , Feminino , Genética Populacional , Genoma Humano , Genótipo , Humanos , Masculino , Nigéria , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase , Curva ROC , Análise de Sequência de DNA
6.
Bioinformatics ; 21(9): 1958-63, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15657097

RESUMO

MOTIVATION: A high density of single nucleotide polymorphism (SNP) coverage on the genome is desirable and often an essential requirement for population genetics studies. Region-specific or chromosome-specific linkage studies also benefit from the availability of as many high quality SNPs as possible. The availability of millions of SNPs from both Perlegen and the public domain and the development of an efficient microarray-based assay for genotyping SNPs has brought up some interesting analytical challenges. Effective methods for the selection of optimal subsets of SNPs spanning the genome and methods for accurately calling genotypes from probe hybridization patterns have enabled the development of a new microarray-based system for robustly genotyping over 100,000 SNPs per sample. RESULTS: We introduce a new dynamic model-based algorithm (DM) for screening over 3 million SNPs and genotyping over 100,000 SNPs. The model is based on four possible underlying states: Null, A, AB and B for each probe quartet. We calculate a probe-level log likelihood for each model and then select between the four competing models with an SNP-level statistical aggregation across multiple probe quartets to provide a high-quality genotype call along with a quality measure of the call. We assess performance with HapMap reference genotypes, informative Mendelian inheritance relationship in families, and consistency between DM and another genotype classification method. At a call rate of 95.91% the concordance with reference genotypes from the HapMap Project is 99.81% based on over 1.5 million genotypes, the Mendelian error rate is 0.018% based on 10 trios, and the consistency between DM and MPAM is 99.90% at a comparable rate of 97.18%. We also develop methods for SNP selection and optimal probe selection. AVAILABILITY: The DM algorithm is available in Affymetrix's Genotyping Tools software package and in Affymetrix's GDAS software package. See http://www.affymetrix.com for further information. 10 K and 100 K mapping array data are available on the Affymetrix website.


Assuntos
Algoritmos , Análise Mutacional de DNA/métodos , Testes Genéticos/métodos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Simulação por Computador , Genótipo , Humanos , Software
7.
Bioinformatics ; 19(18): 2397-403, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14668223

RESUMO

MOTIVATION: Analysis of many thousands of single nucleotide polymorphisms (SNPs) across whole genome is crucial to efficiently map disease genes and understanding susceptibility to diseases, drug efficacy and side effects for different populations and individuals. High density oligonucleotide microarrays provide the possibility for such analysis with reasonable cost. Such analysis requires accurate, reliable methods for feature extraction, classification, statistical modeling and filtering. RESULTS: We propose the modified partitioning around medoids as a classification method for relative allele signals. We use the average silhouette width, separation and other quantities as quality measures for genotyping classification. We form robust statistical models based on the classification results and use these models to make genotype calls and calculate quality measures of calls. We apply our algorithms to several different genotyping microarrays. We use reference types, informative Mendelian relationship in families, and leave-one-out cross validation to verify our results. The concordance rates with the single base extension reference types are 99.36% for the SNPs on autosomes and 99.64% for the SNPs on sex chromosomes. The concordance of the leave-one-out test is over 99.5% and is 99.9% higher for AA, AB and BB cells. We also provide a method to determine the gender of a sample based on the heterozygous call rate of SNPs on the X chromosome. See http://www.affymetrix.com for further information. The microarray data will also be available from the Affymetrix web site. AVAILABILITY: The algorithms will be available commercially in the Affymetrix software package.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico/métodos , Cromossomos Humanos X/genética , Frequência do Gene , Genótipo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Genome Res ; 14(3): 414-25, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14993208

RESUMO

The analysis of single nucleotide polymorphisms (SNPs) is increasingly utilized to investigate the genetic causes of complex human diseases. Here we present a high-throughput genotyping platform that uses a one-primer assay to genotype over 10,000 SNPs per individual on a single oligonucleotide array. This approach uses restriction digestion to fractionate the genome, followed by amplification of a specific fractionated subset of the genome. The resulting reduction in genome complexity enables allele-specific hybridization to the array. The selection of SNPs was primarily determined by computer-predicted lengths of restriction fragments containing the SNPs, and was further driven by strict empirical measurements of accuracy, reproducibility, and average call rate, which we estimate to be >99.5%, >99.9%, and>95%, respectively [corrected]. With average heterozygosity of 0.38 and genome scan resolution of 0.31 cM, the SNP array is a viable alternative to panels of microsatellites (STRs). As a demonstration of the utility of the genotyping platform in whole-genome scans, we have replicated and refined a linkage region on chromosome 2p for chronic mucocutaneous candidiasis and thyroid disease, previously identified using a panel of microsatellite (STR) markers.


Assuntos
Primers do DNA/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único/genética , Alelos , Biomarcadores , Candidíase Mucocutânea Crônica/genética , Sondas de DNA/genética , Sondas de DNA/metabolismo , Etnicidade/genética , Ligação Genética/genética , Predisposição Genética para Doença/genética , Genoma Humano , Genótipo , Heterozigoto , Humanos , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Doenças da Glândula Tireoide/genética
9.
Nat Methods ; 1(2): 109-11, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15782172

RESUMO

We present a genotyping method for simultaneously scoring 116,204 SNPs using oligonucleotide arrays. At call rates >99%, reproducibility is >99.97% and accuracy, as measured by inheritance in trios and concordance with the HapMap Project, is >99.7%. Average intermarker distance is 23.6 kb, and 92% of the genome is within 100 kb of a SNP marker. Average heterozygosity is 0.30, with 105,511 SNPs having minor allele frequencies >5%.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Análise Mutacional de DNA/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Testes Genéticos/métodos , Genoma Humano , Genótipo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA