Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Mol Biol ; 85(1-2): 107-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24452833

RESUMO

A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.


Assuntos
Genes de Plantas , Glycine max/parasitologia , Interações Hospedeiro-Parasita , Nematoides/patogenicidade , Proteínas Qa-SNARE/fisiologia , Animais , Clonagem Molecular , Proteínas Qa-SNARE/genética , Reação em Cadeia da Polimerase em Tempo Real , Glycine max/genética
2.
Plant Mol Biol ; 80(2): 131-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22689004

RESUMO

Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G â†’ T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G â†’ A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Resistência à Doença/genética , Genótipo , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Mutação , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Glycine max/classificação , Glycine max/parasitologia , Especificidade da Espécie , Tylenchoidea/fisiologia
3.
Plant Mol Biol ; 75(1-2): 141-65, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21153862

RESUMO

Glycine max L. Merr. (soybean) resistance to Heterodera glycines Ichinohe occurs at the site of infection, a nurse cell known as the syncytium. Resistance is classified into two cytologically-defined responses, the G. max ([Peking])- and G. max ([PI 88788])-types. Each type represents a cohort of G. max genotypes. Resistance in G. max ([Peking]) occurs by a potent and rapid localized response, affecting parasitic second stage juveniles (p-J2). In contrast, resistance occurs by a potent but more prolonged reaction in the genotype G. max ([PI 88788]) that affects nematode development at the J3 and J4 stages. Microarray analyses comparing these cytologically and developmentally distinct resistant reactions reveal differences in gene expression in pericycle and surrounding cells even before infection. The differences include higher relative levels of the differentially expressed in response to arachidonic acid 1 gene (DEA1 [Gm-DEA1]) (+224.19-fold) and a protease inhibitor (+68.28-fold) in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). Gene pathway analyses compare the two genotypes (1) before, (2) at various times during, (3) constitutively throughout the resistant reaction and (4) at all time points prior to and during the resistant reaction. The amplified levels of transcriptional activity of defense genes may explain the rapid and potent reaction in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). In contrast, the shared differential expression levels of genes in G. max ([Peking/PI 548402]) and G. max ([PI 88788]) may indicate a conserved genomic program underlying the G. max resistance on which the genotype-specific gene expression programs are built off.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Doenças das Plantas/genética , Animais , Genótipo , Células Gigantes/metabolismo , Células Gigantes/parasitologia , Interações Hospedeiro-Parasita , Imunidade Inata/genética , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Glycine max/citologia , Glycine max/parasitologia , Especificidade da Espécie , Fatores de Tempo , Tylenchoidea/fisiologia
4.
Plant Mol Biol ; 77(4-5): 513-28, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21986905

RESUMO

The soybean defense response to the soybean cyst nematode was used as a model to map at cellular resolution its genotype-defined cell fate decisions occurring during its resistant reactions. The defense responses occur at the site of infection, a nurse cell known as the syncytium. Two major genotype-defined defense responses exist, the G. max ([Peking])- and G. max ([PI 88788])-types. Resistance in G. max ([Peking]) is potent and rapid, accompanied by the formation of cell wall appositions (CWAs), structures known to perform important defense roles. In contrast, defense occurs by a potent but more prolonged reaction in G. max ([PI 88788]), lacking CWAs. Comparative transcriptomic analyses with confirmation by Illumina® deep sequencing were organized through a custom-developed application, Pathway Analysis and Integrated Coloring of Experiments (PAICE) that presents gene expression of these cytologically and developmentally distinct defense responses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) framework. The analyses resulted in the generation of 1,643 PAICE pathways, allowing better understanding of gene activity across all chromosomes. Analyses of the rhg1 resistance locus, defined within a 67 kb region of DNA demonstrate expression of an amino acid transporter and an α soluble NSF attachment protein gene specifically in syncytia undergoing their defense responses.


Assuntos
Glycine max/parasitologia , Interações Hospedeiro-Parasita/genética , Tylenchoidea/fisiologia , Animais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Glycine max/citologia , Glycine max/genética , Glycine max/fisiologia , Transcriptoma
5.
Plant Physiol Biochem ; 48(2-3): 176-93, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20138530

RESUMO

The plant parasitic nematode, Heterodera glycines is the major pathogen of Glycine max (soybean). H. glycines accomplish parasitism by creating a nurse cell known as the syncytium from which it feeds. The syncytium undergoes two developmental phases. The first is a parasitism phase where feeding sites are selected, initiating the development of the syncytium. During this earlier phase (1-4 days post infection), syncytia undergoing resistant and susceptible reactions appear the same. The second phase is when the resistance response becomes evident (between 4 and 6dpi) and is completed by 9dpi. Analysis of the resistant reaction of G. max genotype PI 88788 (G. max([PI 88788])) to H. glycines population NL1-RHg/HG-type 7 (H. glycines([NL1-RHg/HG-type 7])) is accomplished by laser microdissection of syncytia at 3, 6 and 9dpi. Comparative analyses are made to pericycle and their neighboring cells isolated from mock-inoculated roots. These analyses reveal induced levels of the jasmonic acid biosynthesis and 13-lipoxygenase pathways. Direct comparative analyses were also made of syncytia at 6 days post infection to those at 3dpi (base line). The comparative analyses were done to identify localized gene expression that characterizes the resistance phase of the resistant reaction. The most highly induced pathways include components of jasmonic acid biosynthesis, 13-lipoxygenase pathway, S-adenosyl methionine pathway, phenylpropanoid biosynthesis, suberin biosynthesis, adenosylmethionine biosynthesis, ethylene biosynthesis from methionine, flavonoid biosynthesis and the methionine salvage pathway. In comparative analyses of 9dpi to 6dpi (base line), these pathways, along with coumarin biosynthesis, cellulose biosynthesis and homogalacturonan degradation are induced. The experiments presented here strongly implicate the jasmonic acid defense pathway as a factor involved in the localized resistant reaction of G. max([PI 88788]) to H. glycines([NL1-RHg/HG-type 7]).


Assuntos
Ciclopentanos/metabolismo , Expressão Gênica , Células Gigantes/metabolismo , Glycine max/genética , Imunidade Inata/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Tylenchoidea/patogenicidade , Animais , Celulose/biossíntese , Genes de Plantas , Genótipo , Células Gigantes/parasitologia , Interações Hospedeiro-Parasita/genética , Redes e Vias Metabólicas , Pectinas/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/biossíntese , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Glycine max/metabolismo , Glycine max/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA