Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Mol Life Sci ; 80(12): 369, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989805

RESUMO

Mutations of large conductance Ca2+- and voltage-activated K+ channels (BK) are associated with cognitive impairment. Here we report that CA1 pyramidal neuron-specific conditional BK knock-out (cKO) mice display normal locomotor and anxiety behavior. They do, however, exhibit impaired memory acquisition and retrieval in the Morris Water Maze (MWM) when compared to littermate controls (CTRL). In line with cognitive impairment in vivo, electrical and chemical long-term potentiation (LTP) in cKO brain slices were impaired in vitro. We further used a genetically encoded fluorescent K+ biosensor and a Ca2+-sensitive probe to observe cultured hippocampal neurons during chemical LTP (cLTP) induction. cLTP massively reduced intracellular K+ concentration ([K+]i) while elevating L-Type Ca2+ channel- and NMDA receptor-dependent Ca2+ oscillation frequencies. Both, [K+]i decrease and Ca2+ oscillation frequency increase were absent after pharmacological BK inhibition or in cells lacking BK. Our data suggest that L-Type- and NMDAR-dependent BK-mediated K+ outflow significantly contributes to hippocampal LTP, as well as learning and memory.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Potenciação de Longa Duração , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Neurônios , Camundongos Knockout
2.
FASEB J ; 35(5): e21568, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817875

RESUMO

The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.


Assuntos
Potenciais de Ação , Encefalopatias/prevenção & controle , Morte Celular , N-Metilaspartato/toxicidade , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Canais de Potássio Ativados por Sódio/fisiologia , Animais , Encefalopatias/induzido quimicamente , Encefalopatias/metabolismo , Encefalopatias/patologia , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Glutâmico/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
3.
Cell Mol Life Sci ; 78(23): 7569-7587, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34664085

RESUMO

Human mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with epilepsy and intellectual disability. Accordingly, Slack knockout mice (Slack-/-) exhibit cognitive flexibility deficits in distinct behavioral tasks. So far, however, the underlying causes as well as the role of Slack in hippocampus-dependent memory functions remain enigmatic. We now report that infant (P6-P14) Slack-/- lack both hippocampal LTD and LTP, likely due to impaired NMDA receptor (NMDAR) signaling. Postsynaptic GluN2B levels are reduced in infant Slack-/-, evidenced by lower amplitudes of NMDAR-meditated excitatory postsynaptic potentials. Low GluN2B affected NMDAR-mediated Ca2+-influx, rendering cultured hippocampal Slack-/-neurons highly insensitive to the GluN2B-specific inhibitor Ro 25-6981. Furthermore, dephosphorylation of the AMPA receptor (AMPAR) subunit GluA1 at S845, which is involved in AMPAR endocytosis during homeostatic and neuromodulator-regulated plasticity, is reduced after chemical LTD (cLTD) in infant Slack-/-. We additionally detect a lack of mGluR-induced LTD in infant Slack-/-, possibly caused by upregulation of the recycling endosome-associated small GTPase Rab4 which might accelerate AMPAR recycling from early endosomes. Interestingly, LTP and mGluR LTD, but not LTD and S845 dephosphorylation after cLTD are restored in adult Slack-/-. This together with normalized expression levels of GluN2B and Rab4 hints to developmental "restoration" of LTP expression despite Slack ablation, whereas in infant and adult brain, NMDAR-dependent LTD induction depends on this channel. Based on the present findings, NMDAR and vesicular transport might represent novel targets for the therapy of intellectual disability associated with Slack mutations. Consequently, careful modulation of hippocampal Slack activity should also improve learning abilities.


Assuntos
Potenciais de Ação , Hipocampo/fisiologia , Potenciação de Longa Duração , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Canais de Potássio Ativados por Sódio/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores , Depressão Sináptica de Longo Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
EMBO J ; 33(8): 781-2, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24599308

RESUMO

LTP, the lasting increase in synaptic transmission following heightened activity, is viewed as the physiological basis of learning. In this issue of The EMBO Journal, Dupuis et al find that certain NMDARs diffuse away upon LTP. Antibodies against the NMDAR from patients with autoimmune synaptic encephalitis prevent this redistribution and LTP.


Assuntos
Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Animais
5.
EMBO J ; 33(12): 1341-53, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24705785

RESUMO

Postsynaptic density protein-95 (PSD-95) is a central element of the postsynaptic architecture of glutamatergic synapses. PSD-95 mediates postsynaptic localization of AMPA receptors and NMDA receptors and plays an important role in synaptic plasticity. PSD-95 is released from postsynaptic membranes in response to Ca(2+) influx via NMDA receptors. Here, we show that Ca(2+)/calmodulin (CaM) binds at the N-terminus of PSD-95. Our NMR structure reveals that both lobes of CaM collapse onto a helical structure of PSD-95 formed at its N-terminus (residues 1-16). This N-terminal capping of PSD-95 by CaM blocks palmitoylation of C3 and C5, which is required for postsynaptic PSD-95 targeting and the binding of CDKL5, a kinase important for synapse stability. CaM forms extensive hydrophobic contacts with Y12 of PSD-95. The PSD-95 mutant Y12E strongly impairs binding to CaM and Ca(2+)-induced release of PSD-95 from the postsynaptic membrane in dendritic spines. Our data indicate that CaM binding to PSD-95 serves to block palmitoylation of PSD-95, which in turn promotes Ca(2+)-induced dissociation of PSD-95 from the postsynaptic membrane.


Assuntos
Calmodulina/metabolismo , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Fluorescência , Técnicas Histológicas , Immunoblotting , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Conformação Proteica , Ratos
6.
J Biol Chem ; 288(15): 10298-307, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23430246

RESUMO

Alzheimer disease (AD) is characterized by neurodegeneration marked by loss of synapses and spines associated with hyperphosphorylation of tau protein. Accumulating amyloid ß peptide (Aß) in brain is linked to neurofibrillary tangles composed of hyperphosphorylated tau in AD. Here, we identify ß2-adrenergic receptor (ß2AR) that mediates Aß-induced tau pathology. In the prefrontal cortex (PFC) of 1-year-old transgenic mice with human familial mutant genes of presenilin 1 and amyloid precursor protein (PS1/APP), the phosphorylation of tau at Ser-214 Ser-262 and Thr-181, and the protein kinases including JNK, GSK3α/ß, and Ca(2+)/calmodulin-dependent protein kinase II is increased significantly. Deletion of the ß2AR gene in PS1/APP mice greatly decreases the phosphorylation of these proteins. Further analysis reveals that in primary PFC neurons, Aß signals through a ß2AR-PKA-JNK pathway, which is responsible for most of the phosphorylation of tau at Ser-214 and Ser-262 and a significant portion of phosphorylation at Thr-181. Aß also induces a ß2AR-dependent arrestin-ERK1/2 activity that does not participate in phosphorylation of tau. However, inhibition of the activity of MEK, an upstream enzyme of ERK1/2, partially blocks Aß-induced tau phosphorylation at Thr-181. The density of dendritic spines and synapses is decreased in the deep layer of the PFC of 1-year-old PS1/APP mice, and the mice exhibit impairment of learning and memory in a novel object recognition paradigm. Deletion of the ß2AR gene ameliorates pathological effects in these senile PS1/APP mice. The study indicates that ß2AR may represent a potential therapeutic target for preventing the development of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Adrenérgicos beta 2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Arrestina/genética , Arrestina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Receptores Adrenérgicos beta 2/genética , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia
7.
J Biol Chem ; 288(24): 17918-31, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23649627

RESUMO

Recent evidence indicates that the A kinase anchor protein AKAP5 (AKAP79/150) interacts not only with PKA but also with various adenylyl cyclase (AC) isoforms. However, the physiological relevance of AC-AKAP5 binding is largely unexplored. We now show that postsynaptic targeting of AC by AKAP5 is important for phosphorylation of the AMPA-type glutamate receptor subunit GluA1 on Ser-845 by PKA and for synaptic plasticity. Phosphorylation of GluA1 on Ser-845 is strongly reduced (by 70%) under basal conditions in AKAP5 KO mice but not at all in D36 mice, in which the PKA binding site of AKAP5 (i.e. the C-terminal 36 residues) has been deleted without affecting AC association with GluA1. The increase in Ser-845 phosphorylation upon ß-adrenergic stimulation is much more severely impaired in AKAP5 KO than in D36 mice. In parallel, long term potentiation induced by a 5-Hz/180-s tetanus, which mimics the endogenous θ-rhythm and depends on ß-adrenergic stimulation, is only modestly affected in acute forebrain slices from D36 mice but completely abrogated in AKAP5 KO mice. Accordingly, anchoring of not only PKA but also AC by AKAP5 is important for regulation of postsynaptic functions and specifically AMPA receptor activity.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Adenilil Ciclases/metabolismo , Densidade Pós-Sináptica/enzimologia , Transmissão Sináptica , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/enzimologia , Isoproterenol/farmacologia , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Propranolol/farmacologia , Prosencéfalo/enzimologia , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Transporte Proteico , Receptores de AMPA/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
8.
Elife ; 122024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808578

RESUMO

Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Mitocôndrias/metabolismo , Mitocôndrias/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Membranas Mitocondriais/metabolismo , Feminino , Metabolismo Energético
9.
Cardiovasc Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102831

RESUMO

AIMS: Na+-activated Slack potassium (K+) channels are increasingly recognized as regulators of neuronal activity, yet little is known about their role in the cardiovascular system. Slack activity increases when intracellular Na+ concentration ([Na+]i) reaches pathophysiological levels. Elevated [Na+]i is a major determinant of the ischemia and reperfusion (I/R)-induced myocardial injury, thus we hypothesized that Slack plays a role under these conditions. METHODS: and results: K+ currents in cardiomyocytes (CMs) obtained from wildtype (WT) but not from global Slack knockout (KO) mice were sensitive to electrical inactivation of voltage-sensitive Na+-channels. Live-cell imaging demonstrated that K+ fluxes across the sarcolemma rely on Slack, while the depolarized resting membrane potential in Slack-deficient CMs led to excessive cytosolic Ca2+ accumulation and finally to hypoxia/reoxygenation-induced cell death. Cardiac damage in an in vivo model of I/R was exacerbated in global and CM-specific conditional Slack mutants and largely insensitive to mechanical conditioning maneuvers. Finally, the protection conferred by mitochondrial ATP-dependent K+ channels required functional Slack in CMs. CONCLUSIONS: Collectively, our study provides evidence for Slack's crucial involvement in the ion homeostasis of no or low O2-stressed CMs. Thereby, Slack activity opposes the I/R-induced fatal Ca2+-uptake to CMs supporting the cardioprotective signaling widely attributed to mitoKATP function.

10.
Commun Biol ; 6(1): 1029, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821582

RESUMO

Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.


Assuntos
Ácido Caínico , Canais de Potássio , Camundongos , Animais , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio/genética , Canais de Potássio Ativados por Sódio/metabolismo , Ácido Caínico/toxicidade , Ácido Caínico/metabolismo , Neurônios/fisiologia , Convulsões/induzido quimicamente , Convulsões/metabolismo , Camundongos Knockout
11.
J Neurophysiol ; 107(10): 2703-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22338020

RESUMO

The widespread noradrenergic innervation in the brain promotes arousal and learning by molecular mechanisms that remain largely undefined. Recent work shows that the ß(2)-adrenergic receptor (ß(2)AR) is linked to the AMPA-type glutamate receptor subunit GluA1 via stargazin and PSD-95 (Joiner ML, Lise MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW. EMBO J 29: 482-495, 2010). We now demonstrate that the ß(2)AR plays a prominent role in long-term potentiation (LTP) induced by a train of 900 stimuli at 5 Hz (prolonged theta-tetanus-LTP, or PTT-LTP) in the hippocampal CA1 region in mice, which requires simultaneous ß-adrenergic stimulation. Although PTT-LTP was impaired in hippocampal slices from ß(1)AR and ß(2)AR knockout (KO) mice, only ß(2)AR-selective stimulation with salbutamol supported this PTT-LTP in wild-type (WT) slices, whereas ß(1)AR-selective stimulation with dobutamine (+ prazosin) did not. Furthermore, only the ß(2)AR-selective antagonist ICI-118551 and not the ß(1)AR-selective antagonist CGP-20712 inhibited PTT-LTP and phosphorylation of GluA1 on its PKA site S845 in WT slices. Our analysis of S845A knockin (KI) mice indicates that this phosphorylation is relevant for PTT-LTP. These results identify the ß(2)AR-S845 signaling pathway as a prominent regulator of synaptic plasticity.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Adrenérgicos beta/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Dobutamina/farmacologia , Estimulação Elétrica , Imidazóis/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Propanolaminas/farmacologia , Coelhos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
13.
Cell Mol Life Sci ; 68(1): 125-37, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20623157

RESUMO

Neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to modulate spontaneous activity, resting membrane potential, input resistance, afterpotential, rebound activity, and dendritic integration. To evaluate the role of HCN2 for hippocampal synaptic plasticity, we recorded long-term potentiation (LTP) in the direct perforant path (PP) to CA1 pyramidal cells. LTP was enhanced in mice carrying a global deletion of the channel (HCN2(-/-)) but not in a pyramidal neuron-restricted knockout. This precludes an influence of HCN2 located in postsynaptic pyramidal neurons. Additionally, the selective HCN blocker zatebradine reduced the activity of oriens-lacunosum moleculare interneurons in wild-type but not HCN2(-/-) mice and decreased the frequency of spontaneous inhibitory currents in postsynaptic CA1 pyramidal cells. Finally, we found amplified LTP in the PP of mice carrying an interneuron-specific deletion of HCN2. We conclude that HCN2 channels in inhibitory interneurons modulate synaptic plasticity in the PP by facilitating the GABAergic output onto pyramidal neurons.


Assuntos
Região CA1 Hipocampal/metabolismo , Interneurônios/metabolismo , Canais Iônicos/fisiologia , Potenciação de Longa Duração/fisiologia , Via Perfurante/fisiologia , Animais , Deleção de Genes , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Camundongos , Via Perfurante/metabolismo , Canais de Potássio
14.
Free Radic Biol Med ; 181: 43-51, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091062

RESUMO

Cancer represents a leading cause of death worldwide. Hence, a better understanding of the molecular mechanisms causing and propelling the disease is of utmost importance. Several cancer entities are associated with altered K+ channel expression which is frequently decisive for malignancy and disease outcome. The impact of such oncogenic K+ channels on cell patho-/physiology and homeostasis and their roles in different subcellular compartments is, however, far from being understood. A refined method to simultaneously investigate metabolic and ionic signaling events on the level of individual cells and their organelles represent genetically encoded fluorescent biosensors, that allow a high-resolution investigation of compartmentalized metabolite or ion dynamics in a non-invasive manner. This feature of these probes makes them versatile tools to visualize and understand subcellular consequences of aberrant K+ channel expression and activity in K+ channel related cancer research.


Assuntos
Técnicas Biossensoriais , Neoplasias , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Humanos , Íons , Neoplasias/genética
16.
iScience ; 24(4): 102346, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870140

RESUMO

High expression levels of mitochondria-associated hexokinase-II (HKII) represent a hallmark of metabolically highly active cells such as fast proliferating cancer cells. Typically, the enzyme provides a crucial metabolic switch towards aerobic glycolysis. By imaging metabolic activities on the single-cell level with genetically encoded fluorescent biosensors, we here demonstrate that HKII activity requires intracellular K+. The K+ dependency of glycolysis in cells expressing HKII was confirmed in cell populations using extracellular flux analysis and nuclear magnetic resonance-based metabolomics. Reductions of intracellular K+ by gramicidin acutely disrupted HKII-dependent glycolysis and triggered energy stress pathways, while K+ re-addition promptly restored glycolysis-dependent adenosine-5'-triphosphate generation. Moreover, expression and activation of KV1.3, a voltage-gated K+ channel, lowered cellular K+ content and the glycolytic activity of HEK293 cells. Our findings unveil K+ as an essential cofactor of HKII and provide a mechanistic link between activities of distinct K+ channels and cell metabolism.

17.
Front Mol Neurosci ; 12: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766476

RESUMO

Many postsynaptic proteins undergo palmitoylation, the reversible attachment of the fatty acid palmitate to cysteine residues, which influences trafficking, localization, and protein interaction dynamics. Both palmitoylation by palmitoyl acyl transferases (PAT) and depalmitoylation by palmitoyl-protein thioesterases (PPT) is regulated in an activity-dependent, localized fashion. Recently, palmitoylation has received attention for its pivotal contribution to various forms of synaptic plasticity, the dynamic modulation of synaptic strength in response to neuronal activity. For instance, palmitoylation and depalmitoylation of the central postsynaptic scaffold protein postsynaptic density-95 (PSD-95) is important for synaptic plasticity. Here, we provide a comprehensive review of studies linking palmitoylation of postsynaptic proteins to synaptic plasticity.

18.
Cell Rep ; 22(9): 2246-2253, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490264

RESUMO

Altering AMPA receptor (AMPAR) content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1) encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1) modifies AMPAR gating properties in a subunit-dependent manner. Young SynDIG4 knockout (KO) mice have weaker excitatory synapses, as evaluated by immunocytochemistry and electrophysiology. Adult SynDIG4 KO mice show complete loss of tetanus-induced long-term potentiation (LTP), while mEPSC amplitude is reduced by only 25%. Furthermore, SynDIG4 KO mice exhibit deficits in two independent cognitive assays. Given that SynDIG4 colocalizes with the AMPAR subunit GluA1 at non-synaptic sites, we propose that SynDIG4 maintains a pool of extrasynaptic AMPARs necessary for synapse development and function underlying higher-order cognitive plasticity.


Assuntos
Cognição , Potenciais Pós-Sinápticos Excitadores , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Feminino , Genes Reporter , Hipocampo/metabolismo , Cinética , Potenciação de Longa Duração , Memória , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Subunidades Proteicas/metabolismo , Análise e Desempenho de Tarefas , Xenopus laevis
19.
Neuron ; 97(5): 1094-1109.e9, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429936

RESUMO

Despite the central role PSD-95 plays in anchoring postsynaptic AMPARs, how PSD-95 itself is tethered to postsynaptic sites is not well understood. Here we show that the F-actin binding protein α-actinin binds to the very N terminus of PSD-95. Knockdown (KD) of α-actinin phenocopies KD of PSD-95. Mutating lysine at position 10 or lysine at position 11 of PSD-95 to glutamate, or glutamate at position 53 or glutamate and aspartate at positions 213 and 217 of α-actinin, respectively, to lysine impairs, in parallel, PSD-95 binding to α-actinin and postsynaptic localization of PSD-95 and AMPARs. These experiments identify α-actinin as a critical PSD-95 anchor tethering the AMPAR-PSD-95 complex to postsynaptic sites.


Assuntos
Actinina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Actinina/química , Actinina/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/genética , Feminino , Células HEK293 , Humanos , Masculino , Estrutura Secundária de Proteína , Ratos
20.
Front Mol Neurosci ; 11: 260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127717

RESUMO

Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV ( B DNF- live-exon- visualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA