Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675500

RESUMO

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Assuntos
Desenvolvimento Embrionário/genética , Mecanotransdução Celular/genética , Junções Íntimas/genética , Proteína da Zônula de Oclusão-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/genética , Ligação Proteica , Junções Íntimas/fisiologia , Saco Vitelino/crescimento & desenvolvimento , Saco Vitelino/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
2.
Cell ; 157(4): 992-992.e1, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813618

RESUMO

Tight junctions form a morphological and functional border between the apical and basolateral cell surface domains that serves as a paracellular diffusion barrier, enabling epithelial cells to separate compartments of different composition. Tight junctions also contribute to the generation and maintenance of cell polarity and regulate signaling mechanisms that guide cell behavior, shape, and gene expression. This SnapShot illustrates their components, organization, and functions.


Assuntos
Células Epiteliais/citologia , Junções Íntimas/metabolismo , Animais , Polaridade Celular , Regulação da Expressão Gênica , Permeabilidade , Transdução de Sinais
3.
Nat Rev Mol Cell Biol ; 17(9): 564-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353478

RESUMO

Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions.


Assuntos
Junções Íntimas/fisiologia , Animais , Adesão Celular , Permeabilidade da Membrana Celular , Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Junções Íntimas/química , Junções Íntimas/ultraestrutura , Vertebrados/fisiologia
4.
J Cell Physiol ; 236(2): 1083-1093, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32617970

RESUMO

We reported that Disabled-2 (Dab2) is located at the apical membrane in suckling rat intestine. Here, we discovered that, in colon of suckling and adult mouse and of adult human, Dab2 is only at lateral crypt cell membrane and colocalized with E-cadherin. Dab2 depletion in Caco-2 cells led to E-cadherin internalization indicating that its membrane location requires Dab2. In mice, we found that 3 days of dextran sulfate sodium-induced colitis increased Dab2/E-cadherin colocalization, which was decreased as colitis progressed to 6 and 9 days. In agreement, Dab2/E-cadherin colocalization increased in human mild and severe ulcerative colitis and in polyps, being reduced in colon adenocarcinomas, which even showed epithelial Dab2 absence and E-cadherin delocalization. Epithelial Dab2 decrement preceded that of E-cadherin. We suggest that Dab2, by inhibiting E-cadherin internalization, stabilizes adherens junctions, and its absence from the epithelium may contribute to development of colon inflammation and cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma/genética , Proteínas Reguladoras de Apoptose/genética , Caderinas/genética , Neoplasias do Colo/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Adenocarcinoma/patologia , Idoso , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/patologia , Sulfato de Dextrana/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Pólipos/genética , Pólipos/patologia , Ratos
5.
Am J Hum Genet ; 100(2): 334-342, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132693

RESUMO

Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs∗63), c.1996C>T (p.Arg666∗), c.2632G>T (p.Glu878∗), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies.


Assuntos
Polaridade Celular , Células Epiteliais/metabolismo , Degeneração Retiniana/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Adulto , Alelos , Sequência de Aminoácidos , Exoma , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Fenótipo , Retina/metabolismo , Degeneração Retiniana/diagnóstico , Distrofias Retinianas/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Biochim Biophys Acta Biomembr ; 1860(5): 1231-1241, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29470947

RESUMO

Disabled-1 (Dab1) is an essential intracellular adaptor protein in the reelin pathway. Our previous studies in mice intestine showed that Dab1 transmits the reelin signal to cytosolic signalling pathways. Here, we determine the Dab1 isoform expressed in rodent small and large intestine, its subcellular location and co-localization with clathrin, caveolin-1 and N-Wasp. PCR and sequencing analysis reveal that rodent small and large intestine express a Dab1 isoform that misses three (Y198, Y200 and Y220) of the five tyrosine phosphorylation sites present in brain Dab1 isoform (canonical) and contains nuclear localization and export signals. Western blot assays show that both, crypts, which shelter progenitor cells, and enterocytes express the same Dab1 isoform, suggesting that epithelial cell differentiation does not regulate intestinal generation of alternatively spliced Dab1 variants. They also reveal that the canonical and the intestinal Dab1 isoforms differ in their total degree of phosphorylation. Immunostaining assays show that in enterocytes Dab1 localizes at the apical and lateral membranes, apical vesicles, close to adherens junctions and desmosomes, as well as in the nucleus; co-localizes with clathrin and with N-Wasp but not with caveolin-1, and in Caco-2 cells Dab1 localizes at cell-to-cell junctions by a Ca2+-dependent process. In conclusion, the results indicate that in rodent intestine a truncated Dab1 variant transmits the reelin signal and may play a role in clathrin-mediated apical endocytosis and in the control of cell-to-cell junction assembly. A function of intestinal Dab1 variant as a nucleocytoplasmic shuttling protein is also inferred from its sequence and nuclear location.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose , Junções Intercelulares/metabolismo , Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células CACO-2 , Comunicação Celular/genética , Células Cultivadas , Endocitose/genética , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Isoformas de Proteínas , Ratos , Ratos Wistar , Proteína Reelina , Distribuição Tecidual
7.
J Cell Sci ; 127(Pt 16): 3401-13, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25125573

RESUMO

Tight junctions are a component of the epithelial junctional complex, and they form the paracellular diffusion barrier that enables epithelial cells to create cellular sheets that separate compartments with different compositions. The assembly and function of tight junctions are intimately linked to the actomyosin cytoskeleton and, hence, are under the control of signalling mechanisms that regulate cytoskeletal dynamics. Tight junctions not only receive signals that guide their assembly and function, but transmit information to the cell interior to regulate cell proliferation, migration and survival. As a crucial component of the epithelial barrier, they are often targeted by pathogenic viruses and bacteria, aiding infection and the development of disease. In this Commentary, we review recent progress in the understanding of the molecular signalling mechanisms that drive junction assembly and function, and the signalling processes by which tight junctions regulate cell behaviour and survival. We also discuss the way in which junctional components are exploited by pathogenic viruses and bacteria, and how this might affect junctional signalling mechanisms.


Assuntos
Fenômenos Fisiológicos Bacterianos , Diferenciação Celular , Células Epiteliais/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Fenômenos Fisiológicos Virais , Animais , Bactérias/patogenicidade , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Humanos , Junções Íntimas/microbiologia , Junções Íntimas/virologia , Vírus/patogenicidade
8.
J Cell Sci ; 127(Pt 16): 3425-33, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24963131

RESUMO

At the early stages of carcinogenesis, transformation occurs in single cells within tissues. In an epithelial monolayer, such mutated cells are recognized by their normal neighbors and are often apically extruded. The apical extrusion requires cytoskeletal reorganization and changes in cell shape, but the molecular switches involved in the regulation of these processes are poorly understood. Here, using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry, we have identified proteins that are modulated in transformed cells upon their interaction with normal cells. Phosphorylation of VASP at serine 239 is specifically upregulated in Ras(V12)-transformed cells when they are surrounded by normal cells. VASP phosphorylation is required for the cell shape changes and apical extrusion of Ras-transformed cells. Furthermore, PKA is activated in Ras-transformed cells that are surrounded by normal cells, leading to VASP phosphorylation. These results indicate that the PKA-VASP pathway is a crucial regulator of tumor cell extrusion from the epithelium, and they shed light on the events occurring at the early stage of carcinogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Transformação Celular Neoplásica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epitélio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Transformada , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Epitélio/enzimologia , Humanos , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(27): 10897-902, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22711822

RESUMO

A central component of the cellular stress response is p21(WAF1/CIP1), which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1-associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB's activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3'-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Células Epiteliais/fisiologia , Proteínas de Choque Térmico/metabolismo , Estabilidade de RNA/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Apoptose/fisiologia , Células CACO-2 , Sobrevivência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Cães , Células Epiteliais/citologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Rim/citologia , Proteínas de Membrana/metabolismo , Necrose/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , RNA Mensageiro/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estresse Mecânico , Junções Íntimas/fisiologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Zônula de Oclusão-1
10.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607079

RESUMO

Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.


Assuntos
Mecanotransdução Celular , Transdução de Sinais , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Animais , Células Madin Darby de Rim Canino , Cães
11.
Hum Mol Genet ; 20(5): 975-87, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21159800

RESUMO

We recently reported that mutations in the widely expressed nuclear protein TOPORS (topoisomerase I-binding arginine/serine rich) are associated with autosomal dominant retinal degeneration. However, the precise localization and a functional role of TOPORS in the retina remain unknown. Here, we demonstrate that TOPORS is a novel component of the photoreceptor sensory cilium, which is a modified primary cilium involved with polarized trafficking of proteins. In photoreceptors, TOPORS localizes primarily to the basal bodies of connecting cilium and in the centrosomes of cultured cells. Morpholino-mediated silencing of topors in zebrafish embryos demonstrates in another species a comparable retinal problem as seen in humans, resulting in defective retinal development and failure to form outer segments. These defects can be rescued by mRNA encoding human TOPORS. Taken together, our data suggest that TOPORS may play a key role in regulating primary cilia-dependent photoreceptor development and function. Additionally, it is well known that mutations in other ciliary proteins cause retinal degeneration, which may explain why mutations in TOPORS result in the same phenotype.


Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Degeneração Retiniana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cílios/genética , Humanos , Camundongos , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Células Fotorreceptoras/metabolismo , Transporte Proteico , Retina/metabolismo , Degeneração Retiniana/genética , Ubiquitina-Proteína Ligases/genética , Peixe-Zebra
12.
Proc Natl Acad Sci U S A ; 107(25): 11387-92, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534449

RESUMO

Epithelial cells treated with high concentrations of ouabain (e.g., 1 microM) retrieve molecules involved in cell contacts from the plasma membrane and detach from one another and their substrates. On the basis of this observation, we suggested that ouabain might also modulate cell contacts at low, nontoxic levels (10 or 50 nM). To test this possibility, we analyzed its effect on a particular type of cell-cell contact: the tight junction (TJ). We demonstrate that at concentrations that neither inhibit K(+) pumping nor disturb the K(+) balance of the cell, ouabain modulates the degree of sealing of the TJ as measured by transepithelial electrical resistance (TER) and the flux of neutral 3 kDa dextran (J(DEX)). This modulation is accompanied by changes in the levels and distribution patterns of claudins 1, 2, and 4. Interestingly, changes in TER, J(DEX), and claudins behavior are mediated through signal pathways containing ERK1/2 and c-Src, which have distinct effects on each physiological parameter and claudin type. These observations support the theory that at low concentrations, ouabain acts as a modulator of cell-cell contacts.


Assuntos
Células Epiteliais/efeitos dos fármacos , Ouabaína/farmacologia , Junções Íntimas/efeitos dos fármacos , Animais , Proteína Tirosina Quinase CSK , Dextranos/química , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Íons , Modelos Biológicos , Potássio/química , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , Quinases da Família src
13.
Curr Biol ; 33(21): R1135-R1140, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935122

RESUMO

Various functions within our bodies require the generation and maintenance of compartments with distinct compositions, which in turn necessitate the formation of semipermeable cellular diffusion barriers. For example, the blood-brain barrier protects the brain by allowing only specific molecules to pass through. Another instance is the intestinal barrier, which allows the uptake of essential nutrients, while restricting the passage of pathogenic molecules and bacteria. Breakdown of such barriers causes various pathologies, such as brain or retinal edema, or diarrhoea. Epithelia and endothelia are the most common barrier-forming cells. Individual cells in such barriers are held together by cell-cell adhesion structures - also known as intercellular junctions - that are essential for barrier formation and maintenance. Here, we will focus on the structure and assembly of tight junctions (TJs) and their functions as barriers, but will refer to other adhesive structures crucial for barrier regulation such as adherens junctions (AJs) and focal adhesions to the extracellular matrix (ECM) (Figure 1A,B). We will also discuss additional functions of TJs in cell surface polarity and the regulation of gene expression, cell function, and cell behaviour.


Assuntos
Junções Intercelulares , Junções Íntimas , Junções Íntimas/metabolismo , Junções Intercelulares/metabolismo , Adesão Celular , Junções Aderentes/metabolismo , Encéfalo
15.
Curr Opin Cell Biol ; 17(5): 453-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16098725

RESUMO

Tight junctions are important for the permeability properties of epithelial and endothelial barriers as they restrict diffusion along the paracellular space. Recent observations have revealed that tight junctions also function in the regulation of epithelial proliferation and differentiation. They harbour evolutionarily conserved protein complexes that regulate polarisation and junction assembly. Tight junctions also recruit signalling proteins that participate in the regulation of cell proliferation and differentiation. These signalling proteins include components that affect established signalling cascades and dual localisation proteins that can associate with junctions as well as travel to the nucleus where they regulate gene expression.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Células Epiteliais/fisiologia , Junções Íntimas/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiologia , Mamíferos , Modelos Biológicos , Transdução de Sinais/fisiologia , Junções Íntimas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
16.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497035

RESUMO

Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.


Assuntos
Fosfoproteínas , Junções Íntimas , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Fosfoproteínas/metabolismo , Caderinas/metabolismo , Citoesqueleto/metabolismo
17.
Cells ; 11(11)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35681428

RESUMO

Inflammation and fibrosis are important components of diseases that contribute to the malfunction of epithelia and endothelia. The Rho guanine nucleotide exchange factor (GEF) GEF-H1/ARHGEF-2 is induced in disease and stimulates inflammatory and fibrotic processes, cell migration, and metastasis. Here, we have generated peptide inhibitors to block the function of GEF-H1. Inhibitors were designed using a structural in silico approach or by isolating an inhibitory sequence from the autoregulatory C-terminal domain. Candidate inhibitors were tested for their ability to block RhoA/GEF-H1 binding in vitro, and their potency and specificity in cell-based assays. Successful inhibitors were then evaluated in models of TGFß-induced fibrosis, LPS-stimulated endothelial cell-cell junction disruption, and cell migration. Finally, the most potent inhibitor was successfully tested in an experimental retinal disease mouse model, in which it inhibited blood vessel leakage and ameliorated retinal inflammation when treatment was initiated after disease diagnosis. Thus, an antagonist that blocks GEF-H1 signaling effectively inhibits disease features in in vitro and in vivo disease models, demonstrating that GEF-H1 is an effective therapeutic target and establishing a new therapeutic approach.


Assuntos
Doenças Retinianas , Transdução de Sinais , Animais , Fibrose , Inflamação , Camundongos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
18.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36121394

RESUMO

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Assuntos
Actomiosina , Miotonina Proteína Quinase , Fagocitose , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase/metabolismo , Fagocitose/fisiologia , Proteínas Tirosina Quinases , Receptores Fc , c-Mer Tirosina Quinase/metabolismo
20.
Physiology (Bethesda) ; 25(1): 16-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20134025

RESUMO

Tight junctions are heteromeric protein complexes that act as signaling centers by mediating the bidirectional transmission of information between the environment and the cell interior to control paracellular permeability and differentiation. Insight into tight junction-associated signaling mechanisms is of fundamental importance for our understanding of the physiology of epithelia and endothelia in health and disease.


Assuntos
Comunicação Celular , Células Endoteliais/enzimologia , Células Epiteliais/enzimologia , Transdução de Sinais , Junções Íntimas/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Comunicação Celular/genética , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Complexos Multiproteicos , Permeabilidade , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA