Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762542

RESUMO

Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease, one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria. Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly exert cardio-renal protection in people with and without diabetes in both preclinical and clinical settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Rim/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
2.
Curr Opin Nephrol Hypertens ; 31(2): 135-141, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086983

RESUMO

PURPOSE OF REVIEW: Sodium-glucose co-transporter 2 (SGLT2) inhibitors have taken centre stage in research and therapeutic efforts to modulate hard clinical outcomes in patients with heightened cardiovascular and renal risk profiles. Sympathetic nervous system (SNS) activation is a prominent feature across several cardiovascular and renal disease states. This review reflects on the remarkable clinical impact of SGLT2 inhibitors on cardiorenal outcomes, and navigates the evidence for a proposed clinically relevant interaction between SGLT2 and the SNS. RECENT FINDINGS: SGLT2 inhibitors exert several pleiotropic effects beyond glucose-lowering. These include, but are not limited to, diuresis and natriuresis, blood pressure lowering, reduction in inflammation and oxidative stress, stimulation of erythropoiesis, and improvement in cardiac energetics. Treatment with SGLT2 inhibitors is associated with significant improvement in cardiorenal outcomes irrespective of diabetes status. In addition, evidence from preclinical studies points to a strong signal of a bidirectional temporal association between SGLT2 inhibition and reduction in SNS activation. SUMMARY: Ongoing preclinical and clinical trials aimed at unravelling the proposed interaction between SGLT and SNS will enhance our understanding of their individual and/or collective contributions to cardiovascular disease progression and guide future targeted therapeutic interventions.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico , Sódio , Transportador 2 de Glucose-Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Sistema Nervoso Simpático
3.
Curr Hypertens Rep ; 24(3): 67-74, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235172

RESUMO

PURPOSE OF REVIEW: The moderate glucose-lowering effect of sodium glucose co-transporter 2 (SGLT2) inhibitors is unlikely to explain SGLT2 inhibitor-mediated beneficial outcomes, and unravelling the underlying mechanisms is a high priority in the research community. Given the dominant pathophysiologic role of the sympathetic nervous system activation in conditions such as hypertension and perturbed glucose homeostasis, it is pertinent to postulate that SGLT2 inhibitors may exert their beneficial effects at least in part via sympathetic inhibition. RECENT FINDINGS: SGLT2 inhibitors have shown enormous potential to improve cardiovascular outcomes in patients with type 2 diabetes, and their therapeutic potential is currently being investigated in a range of associated comorbidities such as heart failure and chronic kidney disease. Indeed, recent experimental data in relevant animal models highlight a bidirectional interaction between sympathetic nervous system activation and SGLT2 expression, and this facilitates several of the features associated with SGLT2 inhibition observed in clinical trials including improved glucose metabolism, weight loss, increased diuresis, and lowering of blood pressure. Currently available data highlight the various levels of interaction between the sympathetic nervous system and SGLT2 expression and explores the potential for SGLT2 inhibition as a therapeutic strategy in conditions commonly characterised by sympathetic activation.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Síndrome Metabólica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Síndrome Metabólica/tratamento farmacológico , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Simpatolíticos/uso terapêutico
4.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499475

RESUMO

Elevated circulating platelet-derived extracellular vesicles (pEVs) have been associated with arterial hypertension. The role of hypertension-mediated organ damage (HMOD) to induce EV release is still unknown. We studied the micro- and macro-vascular changes (retinal vascular density and pulse wave velocity), endothelial function (flow-mediated vasodilation of brachial artery and finger plethysmography), and assessed the psychosocial status (anxiety and depression) in hypertensive patients to determine their relationship with EV release. Pulse wave velocity showed a significant positive correlation with pEVs (r = 0.33; p = 0.01). Systolic blood pressure (SBP) negatively correlated with retinal vascularity. The superficial retinal vascular plexus density in the whole image showed a significant negative correlation with 24 h SBP (r = −0.38, p < 0.01), day-SBP (r = −0.35, p = 0.01), and night-SBP (r = −0.27, p = 0.04). pEVs did not show significant associations with microvascular damage (retinal vascular density), endothelial function (flow-mediated vasodilation of brachial artery and finger plethysmography), or psychosocial status (anxiety and depression). Our results indicate that the pEV levels were associated with macrovascular damage measured by PWV, whereas no significant association between pEVs and microvascular damage, endothelial function, or emotional status could be detected. The potential utility of pEV in clinical practice in the context of HMOD may be limited to macrovascular changes.


Assuntos
Vesículas Extracelulares , Hipertensão , Humanos , Análise de Onda de Pulso , Artéria Braquial , Pressão Sanguínea/fisiologia
5.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142436

RESUMO

Elevated circulating platelet-derived extracellular vesicles (EVs) have been reported in conditions associated with thrombotic risk. The present study aimed to assess the relationship between circulating platelet-derived EV levels, cardiovascular risk stratification and vascular organ damage, as assessed by pulse wave velocity (PWV). A total of 92 patients were included in the present analysis. Platelet EV were evaluated by flow cytometry (CD41+/Annexin v+). The cardiovascular risk was determined using the 2021 ESC guideline stratification and SCORE2 and SCORE-OP. PWV was performed as a surrogate to assess macrovascular damage. Risk stratification revealed significant group differences in EV levels (ANOVA, p = 0.04). Post hoc analysis demonstrated significantly higher levels of EVs in the very high-risk group compared with the young participants (12.53 ± 8.69 vs. 7.51 ± 4.67 EV/µL, p = 0.03). Linear regression models showed SCORE2 and SCORE-OP (p = 0.04) was a predictor of EV levels. EVs showed a significant association with macrovascular organ damage measured by PWV (p = 0.01). PWV progressively increased with more severe cardiovascular risk (p < 0.001) and was also associated with SCORE2 and SCORE-OP (p < 0.001). Within the pooled group of subjects with low to moderate risk and young participants (<40 years), those with EV levels in the highest tertile had a trend towards higher nocturnal blood pressure levels, fasting glucose concentration, lipid levels, homocysteine and PWV. Levels of platelet-derived EVs were highest in those patients with very high CV risk. Within a pooled group of patients with low to moderate risk, an unfavourable cardiometabolic profile was present with higher EV levels.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Hipertensão , Anexina A5 , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Glucose , Fatores de Risco de Doenças Cardíacas , Homocisteína , Humanos , Lipídeos , Análise de Onda de Pulso , Fatores de Risco
6.
Immunol Cell Biol ; 99(7): 749-766, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866598

RESUMO

Brown adipose tissue (BAT) may be an important metabolic regulator of whole-body glucose. While important roles have been ascribed to macrophages in regulating metabolic functions in BAT, little is known of the roles of other immune cells subsets, particularly dendritic cells (DCs). Eating a high-fat diet may compromise the development of hematopoietic stem and progenitor cells (HSPCs)-which give rise to DCs-in bone marrow, with less known of its effects in BAT. We have previously demonstrated that ongoing exposure to low-dose ultraviolet radiation (UVR) significantly reduced the 'whitening' effect of eating a high-fat diet upon interscapular (i) BAT of mice. Here, we examined whether this observation may be linked to changes in the phenotype of HSPCs and myeloid-derived immune cells in iBAT and bone marrow of mice using 12-colour flow cytometry. Many HSPC subsets declined in both iBAT and bone marrow with increasing metabolic dysfunction. Conversely, with rising adiposity and metabolic dysfunction, conventional DCs (cDCs) increased in both of these tissues. When compared with a low-fat diet, consumption of a high-fat diet significantly reduced proportions of myeloid, common myeloid and megakaryocyte-erythrocyte progenitors in iBAT, and short-term hematopoietic stem cells in bone marrow. In mice fed the high-fat diet, exposure to low-dose UVR significantly reduced proportions of cDCs in iBAT, independently of nitric oxide release from irradiated skin [blocked using the scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO)], but did not significantly modify HSPC subsets in either tissue. Further studies are needed to determine whether changes in these cell populations contribute towards metabolic dysfunction .


Assuntos
Tecido Adiposo Marrom , Células-Tronco Hematopoéticas , Tecido Adiposo Marrom/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Células Progenitoras Mieloides , Raios Ultravioleta
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638990

RESUMO

Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with glucose intolerance and insulin resistance, often culminating in Type 2 Diabetes (T2D). Importantly, our team has recently shown that the TNF superfamily (TNFSF) member protein, TNFSF14, has been reported to protect against high fat diet induced obesity and pre-diabetes. We hypothesized that mimics of TNFSF14 may therefore be valuable as anti-diabetic agents. In this study, we use in silico approaches to identify key regions of TNFSF14 responsible for binding to the Herpes virus entry mediator and Lymphotoxin ß receptor. In vitro evaluation of a selection of optimised peptides identified six potentially therapeutic TNFSF14 peptides. We report that these peptides increased insulin and fatty acid oxidation signalling in skeletal muscle cells. We then selected one of these promising peptides to determine the efficacy to promote metabolic benefits in vivo. Importantly, the TNFSF14 peptide 7 reduced high fat diet-induced glucose intolerance, insulin resistance and hyperinsulinemia in a mouse model of obesity. In addition, we highlight that the TNFSF14 peptide 7 resulted in a marked reduction in liver steatosis and a concomitant increase in phospho-AMPK signalling. We conclude that TNFSF14-derived molecules positively regulate glucose homeostasis and lipid metabolism and may therefore open a completely novel therapeutic pathway for treating obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Obesidade/complicações , Obesidade/tratamento farmacológico , Peptídeos/administração & dosagem , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/administração & dosagem , Animais , Sítios de Ligação , Glicemia/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/metabolismo , Hipoglicemiantes/síntese química , Resistência à Insulina , Receptor beta de Linfotoxina/química , Receptor beta de Linfotoxina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Peptídeos/síntese química , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921881

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease affecting a quarter of the global population and is often associated with adverse health outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome (MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis. However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood. Compelling evidence from animal and human studies suggest that heightened activation of the sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been shown to exert their beneficial effects at least in part through the associated sympathetic inhibition. Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have been demonstrated to improve the metabolic alterations frequently present in patients with obesity, MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.


Assuntos
Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Fígado/inervação , Sistema Nervoso Simpático/metabolismo
9.
Diabetologia ; 63(1): 179-193, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713010

RESUMO

AIMS/HYPOTHESIS: Exposure to sunlight has the potential to suppress metabolic dysfunction and obesity. We previously demonstrated that regular exposure to low-doses of ultraviolet radiation (UVR) reduced weight gain and signs of diabetes in male mice fed a high-fat diet, in part via release of nitric oxide from skin. Here, we explore further mechanistic pathways through which low-dose UVR exerts these beneficial effects. METHODS: We fed mice with a luciferase-tagged Ucp1 gene (which encodes uncoupling protein-1 [UCP-1]), referred to here as the Ucp1 luciferase transgenic mouse ('Thermomouse') a high-fat diet and examined the effects of repeated exposure to low-dose UVR on weight gain and development of metabolic dysfunction as well as UCP-1-dependent thermogenesis in interscapular brown adipose tissue (iBAT). RESULTS: Repeated exposure to low-dose UVR suppressed the development of glucose intolerance and hepatic lipid accumulation via dermal release of nitric oxide while also reducing circulating IL-6 (compared with mice fed a high-fat diet only). Dietary nitrate supplementation did not mimic the effects of low-dose UVR. A single low dose of UVR increased UCP-1 expression (by more than twofold) in iBAT of mice fed a low-fat diet, 24 h after exposure. However, in mice fed a high-fat diet, there was no effect of UVR on UCP-1 expression in iBAT (compared with mock-treated mice) when measured at regular intervals over 12 weeks. More extensive circadian studies did not identify any substantial shifts in UCP-1 expression in mice exposed to low-dose UVR, although skin temperature at the interscapular site was reduced in UVR-exposed mice. The appearance of cells with a white adipocyte phenotype ('whitening') in iBAT induced by consuming the high-fat diet was suppressed by exposure to low-dose UVR in a nitric oxide-dependent fashion. Significant shifts in the expression of important core gene regulators of BAT function (Dio2, increased more than twofold), fatty acid transport (increased Fatp2 [also known as Slc27a2]), lipolysis (decreased Atgl [also known as Pnpla2]), lipogenesis (decreased Fasn) and inflammation (decreased Tnf), and proportions of macrophages (increased twofold) were observed in iBAT of mice exposed to low-dose UVR. These effects were independent of nitric oxide released from skin. CONCLUSIONS/INTERPRETATION: Our results suggest that non-burning (low-dose) UVR suppresses the BAT 'whitening', steatotic and pro-diabetic effects of consuming a high-fat diet through skin release of nitric oxide, with some metabolic and immune pathways in iBAT regulated by UVR independently of nitric oxide.


Assuntos
Tecido Adiposo Marrom/metabolismo , Óxido Nítrico/metabolismo , Raios Ultravioleta , Tecido Adiposo Marrom/efeitos da radiação , Animais , Glicemia/metabolismo , Ingestão de Alimentos , Masculino , Camundongos , Pele/metabolismo , Pele/efeitos da radiação , Temperatura , Proteína Desacopladora 1/metabolismo , Aumento de Peso/fisiologia
10.
Respir Res ; 20(1): 21, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700289

RESUMO

BACKGROUND: Epidemiological studies have identified strong relationships between maternal obesity and offspring respiratory dysfunction; however, the causal direction is not known. We tested whether maternal obesity alters respiratory function of offspring in early life. METHODS: Female C57Bl/6 J mice were fed a high or low fat diet prior to and during two rounds of mating and resulting pregnancies with offspring lung function assessed at 2 weeks of age. The lung function of dams was measured at 33 weeks of age. RESULTS: A high fat diet caused significant weight gain prior to conception with dams exhibiting elevated fasting glucose, and glucose intolerance. The number of surviving litters was significantly less for dams fed a high fat diet, and surviving offspring weighed more, were longer and had larger lung volumes than those born to dams fed a low fat diet. The larger lung volumes significantly correlated in a linear fashion with body length. Pups born from the second pregnancy had reduced tissue elastance compared to pups born from the first pregnancy, regardless of the dam's diet. As there was reduced offspring survival born to dams fed a high fat diet, the statistical power of lung function measures of offspring was limited. There were signs of increased inflammation in the bronchoalveolar lavage fluid of dams (but not offspring) fed a high fat diet, with more tumour necrosis factor-α, interleukin(IL)-5, IL-33 and leptin detected. Dams that were fed a high fat diet and became pregnant twice had reduced fasting glucose immediately prior to the second mating, and lower levels of IL-33 and leptin in bronchoalveolar lavage fluid. CONCLUSIONS: While maternal high fat diet compromised litter survival, it also promoted somatic and lung growth (increased lung volume) in the offspring. Further studies are required to examine downstream effects of this enhanced lung volume on respiratory function in disease settings.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Pulmão/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica/tendências , Feminino , Medidas de Volume Pulmonar/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Distribuição Aleatória , Taxa de Sobrevida/tendências
11.
Curr Hypertens Rep ; 21(10): 80, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506798

RESUMO

PURPOSE OF REVIEW: To review the findings of trials evaluating pharmacological treatment approaches for hypertension in general, and resistant hypertension (RH) in particular, and propose future research and clinical directions. RECENT FINDINGS: RH is defined as blood pressure (BP) that remains above target levels despite adherence to at least three antihypertensive medications, including a diuretic. Thus far, clinical trials of pharmacological approaches in RH have focused on older molecules, with spironolactone being demonstrated as the most efficacious fourth-line agent. However, the use of spironolactone in clinical practice is hampered by its side effect profile and the risk of hyperkalaemia in important RH subgroups, such as patients with moderate-severe chronic kidney disease (CKD). Clinical trials of new molecules targeting both well-established and more recently elucidated pathophysiologic mechanisms of hypertension offer a multitude of potential treatment avenues that warrant further evaluation in the context of RH. These include selective mineralocorticoid receptor antagonists (MRAs), aldosterone synthase inhibitors (ASIs), activators of the counterregulatory renin-angiotensin-system (RAS), vaccines, neprilysin inhibitors alone and in combined formulations, natriuretic peptide receptor agonists A (NPRA-A) agonists, vasoactive intestinal peptide (VIP) agonists, centrally acting aminopeptidase A (APA|) inhibitors, antimicrobial suppression of central sympathetic outflow (minocycline), dopamine ß-hydroxylase (DßH) inhibitors and Na+/H+ Exchanger 3 (NHE3) inhibitors. There is a paucity of data from trials evaluating newer molecules for the treatment of RH. Emergent novel molecules for non-resistant forms of hypertension heighten the prospects of identifying new, effective and well-tolerated pharmacological approaches to RH. There is a glaring need to undertake RH-focused trials evaluating their efficacy and clinical applicability.


Assuntos
Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Humanos , Hipertensão/fisiopatologia
12.
Eur Heart J Suppl ; 21(Suppl D): D14-D16, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043866

RESUMO

Increased blood pressure (BP) is the single biggest contributing risk factor to the global disease burden. May Measurement Month (MMM) is a global initiative of the International Society of Hypertension aimed at raising awareness of high BP. In Australia, hypertension affects around six million adults and continues to remain the greatest attributable cause of cardiovascular mortality and morbidity (48.3%), stroke deaths (28%), and kidney disease (14%). An opportunistic cross-sectional survey was carried out during May 2017 predominantly in capital cities across Australia which included adult volunteers. Blood pressure measurement, the definition of hypertension and statistical analysis followed the standard MMM protocol. Additional information obtained included anthropometric data and responses to questionnaires on demographic, lifestyle, and environmental factors. Data were collected from 3817 individuals. After multiple imputation, of the 3758 individuals for whom a mean of the second and third BP reading was available, 1188 (31.2%) had hypertension. Of 3213 individuals not receiving antihypertensive treatment, 591 (18.4%) were hypertensive, and 239 (40.1%) of the 596 individuals receiving treatment had uncontrolled BP. Adjusted BP was higher in association with antihypertensive medication, cerebrovascular disease, smoking, and alcohol consumption. Blood pressure was higher when measured on the right arm and on Tuesdays. MMM17 was one of the largest BP screening campaigns undertaken in Australia using standardized BP measurements. In line with previous surveys, around one-third of screened adults had hypertension and approximately 40% of treated individuals remained uncontrolled. These results suggest that opportunistic screening can identify significant numbers with raised BP.

13.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100908

RESUMO

Cardiovascular diseases (CVDs) have been considered the most predominant cause of death and one of the most critical public health issues worldwide. In the past two decades, cardiovascular (CV) mortality has declined in high-income countries owing to preventive measures that resulted in the reduced burden of coronary artery disease (CAD) and heart failure (HF). In spite of these promising results, CVDs are responsible for ~17 million deaths per year globally with ~25% of these attributable to sudden cardiac death (SCD). Pre-clinical data demonstrated that renal denervation (RDN) decreases sympathetic activation as evaluated by decreased renal catecholamine concentrations. RDN is successful in reducing ventricular arrhythmias (VAs) triggering and its outcome was not found inferior to metoprolol in rat myocardial infarction model. Registry clinical data also suggest an advantageous effect of RDN to prevent VAs in HF patients and electrical storm. An in-depth investigation of how RDN, a minimally invasive and safe method, reduces the burden of HF is urgently needed. Myocardial systolic dysfunction is correlated to neuro-hormonal overactivity as a compensatory mechanism to keep cardiac output in the face of declining cardiac function. Sympathetic nervous system (SNS) overactivity is supported by a rise in plasma noradrenaline (NA) and adrenaline levels, raised central sympathetic outflow, and increased organ-specific spillover of NA into plasma. Cardiac NA spillover in untreated HF individuals can reach ~50-fold higher levels compared to those of healthy individuals under maximal exercise conditions. Increased sympathetic outflow to the renal vascular bed can contribute to the anomalies of renal function commonly associated with HF and feed into a vicious cycle of elevated BP, the progression of renal disease and worsening HF. Increased sympathetic activity, amongst other factors, contribute to the progress of cardiac arrhythmias, which can lead to SCD due to sustained ventricular tachycardia. Targeted therapies to avoid these detrimental consequences comprise antiarrhythmic drugs, surgical resection, endocardial catheter ablation and use of the implantable electronic cardiac devices. Analogous NA agents have been reported for single photon-emission-computed-tomography (SPECT) scans usage, specially the 123I-metaiodobenzylguanidine (123I-MIBG). Currently, HF prognosis assessment has been improved by this tool. Nevertheless, this radiotracer is costly, which makes the use of this diagnostic method limited. Comparatively, positron-emission-tomography (PET) overshadows SPECT imaging, because of its increased spatial definition and broader reckonable methodologies. Numerous ANS radiotracers have been created for cardiac PET imaging. However, so far, [11C]-meta-hydroxyephedrine (HED) has been the most significant PET radiotracer used in the clinical scenario. Growing data has shown the usefulness of [11C]-HED in important clinical situations, such as predicting lethal arrhythmias, SCD, and all-cause of mortality in reduced ejection fraction HF patients. In this article, we discussed the role and relevance of novel tools targeting the SNS, such as the [11C]-HED PET cardiac imaging and RDN to manage patients under of SCD risk.


Assuntos
Morte Súbita Cardíaca/etiologia , Insuficiência Cardíaca/complicações , Sistema Nervoso Simpático/efeitos dos fármacos , 3-Iodobenzilguanidina , Animais , Arritmias Cardíacas , Catecolaminas/urina , Modelos Animais de Doenças , Efedrina/análogos & derivados , Coração , Humanos , Infarto do Miocárdio , Miocárdio , Tomografia por Emissão de Pósitrons , Taquicardia Ventricular , Tomografia Computadorizada de Emissão de Fóton Único , Disfunção Ventricular Esquerda
14.
Immunol Cell Biol ; 96(1): 41-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359470

RESUMO

The cytokine Tumor Necrosis Factor Superfamily member 14, TNFSF14 (or LIGHT), is a controversial player in numerous diseases. We investigated the role of endogenously expressed TNFSF14 in diet-induced obesity in vivo. Firstly, we studied the effects of Tnfsf14 ablation on the development of obesity, glucose intolerance, insulin resistance, steatosis, tissue inflammation, and mitochondrial respiration in the liver. Secondly, we examined the role of TNFSF14 expression in hematopoietic cells on obesity and insulin sensitivity. Male Tnfsf14 knockout (KO) and wild type mice were fed chow or high fat diet (HFD) for 12 weeks and were assessed for weight gain, glucose intolerance, insulin resistance, hepatosteatosis, mitochondrial dysfunction, and cytokine expression. Wild-type mice were also reconstituted with bone marrow cells from Tnfsf14 knockout mice and were fed chow or HFD for 12 weeks. These mice were examined for weight gain and insulin resistance. HFD fed mice had elevated circulating levels of serum TNFSF14. Liver and white adipose tissue are potential sources of this elevated TNFSF14. Tnfsf14 deficient mice displayed increased obesity, glucose intolerance, insulin resistance, hepatosteatosis, and mitochondrial dysfunction compared to control mice on a HFD. Hepatic cytokine profiling pointed to a potential novel role of decreased IL-6 in the metabolic disturbances in obesogenic Tnfsf14 knockout mice. Bone marrow cells from Tnfsf14 deficient mice appeared to promote diet-induced obesity, insulin resistance and reduced FGF21 levels in white adipose tissue and liver. Our novel data suggest that Tnfsf14 ablation exacerbates parameters of the metabolic syndrome under high fat feeding conditions and provides evidence to support the development of TNFSF14 agonists as potential therapeutics in diet-induced obesity.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Insulina/metabolismo , Interleucina-6/metabolismo , Fígado/fisiologia , Doenças Metabólicas/imunologia , Obesidade/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Resistência à Insulina/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
15.
Curr Diab Rep ; 18(11): 107, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232652

RESUMO

PURPOSE OF REVIEW: Cardiometabolic disorders such as obesity, metabolic syndrome and diabetes are increasingly common and associated with adverse cardiovascular outcomes. The mechanisms driving these developments are incompletely understood but likely to include autonomic dysregulation. The latest evidence for such a role is briefly reviewed here. RECENT FINDINGS: Recent findings highlight the relevance of autonomic regulation in glucose metabolism and identify sympathetic activation, in concert with parasympathetic withdrawal, as a major contributor to the development of metabolic disorders and an important mediator of the associated adverse cardiovascular consequences. Methods targeting sympathetic overactivity using pharmacological and device-based approaches are available and appear as logical additional approaches to curb the burden of metabolic disorders and alleviate the associated morbidity from cardiovascular causes. While the available data are encouraging, the role of therapeutic inhibition of sympathetic overdrive in the prevention of the metabolic disorders and the associated adverse outcomes requires adequate testing in properly sized randomised controlled trials.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Glicemia/metabolismo , Homeostase , Sistema Nervoso Simpático/metabolismo , Humanos , Inflamação/patologia , Fígado/metabolismo
16.
Curr Hypertens Rep ; 19(12): 99, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29080925

RESUMO

Obesity-related hypertension is commonly characterized by increased sympathetic nerve activity and is therefore acknowledged as a predominantly neurogenic form of hypertension. The sustained sympatho-excitation not only contributes to the rise in blood pressure but also elicits a vicious cycle which facilitates further weight gain and progression of associated co-morbidities. While weight loss and exercise remain at the forefront of therapy for obesity and obesity-related hypertension, the difficulties in achieving and maintaining long-term weight loss with lifestyle measures and the variable blood pressure response to weight loss often necessitate prescription of antihypertensive drug therapy. Remarkably, there are no specific recommendations for pharmacologic treatment for obese patients with arterial hypertension in any of the current guidelines and general principles of antihypertensive treatment are applied. The use of ß-blockers and diuretics is commonly discouraged as first- or second-line therapy due to their unfavorable metabolic effects. This review explores evolving therapeutic strategies which based on their interference with pathophysiologic mechanism relevant in the context of obesity may guide optimized treatment of obesity-related hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão , Obesidade , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Conduta do Tratamento Medicamentoso , Obesidade/complicações , Obesidade/fisiopatologia , Obesidade/psicologia , Obesidade/terapia , Comportamento de Redução do Risco , Sistema Nervoso Simpático/fisiopatologia
17.
Mediators Inflamm ; 2017: 7281986, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265178

RESUMO

Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with insulin resistance, which may ultimately culminate in type 2 diabetes (T2D). We sought to ascertain whether the human metalloproteinase A Disintegrin and Metalloproteinase 19 (ADAM19) correlates with parameters of the metabolic syndrome in humans and mice. To determine the potential novel role of ADAM19 in the metabolic syndrome, we first conducted microarray studies on peripheral blood mononuclear cells from a well-characterised human cohort. Secondly, we examined the expression of ADAM19 in liver and gonadal white adipose tissue using an in vivo diet induced obesity mouse model. Finally, we investigated the effect of neutralising ADAM19 on diet induced weight gain, insulin resistance in vivo, and liver TNF-α levels. Significantly, we show that, in humans, ADAM19 strongly correlates with parameters of the metabolic syndrome, particularly BMI, relative fat, HOMA-IR, and triglycerides. Furthermore, we identified that ADAM19 expression was markedly increased in the liver and gonadal white adipose tissue of obese and T2D mice. Excitingly, we demonstrate in our diet induced obesity mouse model that neutralising ADAM19 therapy results in weight loss, improves insulin sensitivity, and reduces liver TNF-α levels. Our novel data suggest that ADAM19 is pro-obesogenic and enhances insulin resistance. Therefore, neutralisation of ADAM19 may be a potential therapeutic approach to treat obesity and T2D.


Assuntos
Proteínas ADAM/metabolismo , Síndrome Metabólica/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Resistência à Insulina/imunologia , Resistência à Insulina/fisiologia , Leucócitos Mononucleares/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/imunologia , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/metabolismo
18.
Int J Mol Sci ; 18(4)2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28430139

RESUMO

Obesity and diabetes are major causes of morbidity and mortality globally. The current study builds upon our previous association studies highlighting that A Disintegrin And Metalloproteinase 28 (ADAM28) appears to be implicated in the pathogenesis of obesity and type 2 diabetes in humans. Our novel study characterised the expression of ADAM28 in mice with the metabolic syndrome and used molecular inhibition approaches to investigate the functional role of ADAM28 in the pathogenesis of high fat diet-induced obesity. We identified that ADAM28 mRNA and protein expression was markedly increased in the livers of mice with the metabolic syndrome. In addition, noradrenaline, the major neurotransmitter of the sympathetic nervous system, results in elevated Adam28 mRNA expression in human monocytes. Downregulation of ADAM28 with siRNA technology resulted in a lack of weight gain, promotion of insulin sensitivity/glucose tolerance and decreased liver tumour necrosis factor-α (TNF-α) levels in our diet-induced obesity mouse model as well as reduced blood urea nitrogen, alkaline phosphatase and aspartate aminotransferase. In addition, we show that ADAM28 knock-out mice also displayed reduced body weight, elevated high density lipoprotein cholesterol levels, and reductions in blood urea nitrogen, alkaline phosphatase, and aspartate aminotransferase. The results of this study provide important insights into the pathogenic role of the metalloproteinase ADAM28 in the metabolic syndrome and suggests that downregulation of ADAM28 may be a potential therapeutic strategy in the metabolic syndrome.


Assuntos
Proteínas ADAM/metabolismo , Síndrome Metabólica/etiologia , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Nitrogênio da Ureia Sanguínea , Linhagem Celular , HDL-Colesterol/metabolismo , Dieta Hiperlipídica , Ensaio de Imunoadsorção Enzimática , Humanos , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Norepinefrina/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
BMC Cancer ; 16: 151, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912236

RESUMO

BACKGROUND: Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Current treatments include surgery, androgen ablation and radiation. Introduction of more targeted therapies in prostate cancer, based on a detailed knowledge of the signalling pathways, aims to reduce side effects, leading to better clinical outcomes for the patient. ADAM19 (A Disintegrin And Metalloproteinase 19) is a transmembrane and soluble protein which can regulate cell phenotype through cell adhesion and proteolysis. ADAM19 has been positively associated with numerous diseases, but has not been shown to be a tumor suppressor in the pathogenesis of any human cancers. Our group sought to investigate the role of ADAM19 in human prostate cancer. METHODS: ADAM19 mRNA and protein levels were assessed in well characterised human prostate cancer cohorts. ADAM19 expression was assessed in normal prostate epithelial cells (RWPE-1) and prostate cancer cells (LNCaP, PC3) using western blotting and immunocytochemistry. Proliferation assays were conducted in LNCaP cells in which ADAM19 was over-expressed. In vitro scratch assays were performed in PC3 cells over-expressing ADAM19. RESULTS: Immunohistochemical studies highlighted that ADAM19 protein levels were elevated in normal prostate tissue compared to prostate cancer biopsies. Results from the clinical cohorts demonstrated that high levels of ADAM19 in microarrays are positively associated with lower stage (p = 0.02591) and reduced relapse (p = 0.00277) of human prostate cancer. In vitro, ADAM19 expression was higher in RWPE-1 cells compared to LNCaP cells. In addition, human ADAM19 over-expression reduced LNCaP cell proliferation and PC3 cell migration. CONCLUSIONS: Taken together, our immunohistochemical and microarray results and cellular studies have shown for the first time that ADAM19 is a protective factor for human prostate cancer. Further, this study suggests that upregulation of ADAM19 expression could be of therapeutic potential in human prostate cancer.


Assuntos
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Biomarcadores Tumorais , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA