Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Assuntos
Dolicóis , Dolicóis/metabolismo , Dolicóis/biossíntese , Humanos , Glicosilação , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Masculino , Mutação de Sentido Incorreto , Feminino
3.
J Assist Reprod Genet ; 41(2): 451-464, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38175314

RESUMO

PURPOSE: This study aimed to assess the attitudes and experiences of subfertile couples applying for medically assisted reproduction (MAR) using their own gametes towards reproductive genetic carrier screening (RGCS) for monogenic conditions. METHODS: A prospective survey study was conducted where subfertile couples were recruited from the fertility centre of a university hospital in Flanders, Belgium. Participants were offered RGCS free of charge and completed self-administered questionnaires at three different time points. RESULTS: The study sample consisted of 26 couples. Most participants had no children, did not consider themselves as religious, and had some form of higher education. Overall, attitudes towards RGCS were mostly positive and the intention to participate in RGCS was high. Anxiety scores were only elevated and clinically relevant for a limited number of participants. A large proportion of participants would consider preventive reproductive options like prenatal diagnosis or in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) combined with pre-implantation genetic testing for monogenic conditions (PGT-M) in the event of an increased likelihood of conceiving a child with a hereditary condition. Participants were satisfied with their decision to undergo RGCS, and the majority would recommend RGCS to other couples. CONCLUSION: Our study findings suggest that subfertile couples applying for MAR using their own gametes find RGCS acceptable and have a positive attitude towards it. This study provides valuable insights into the perspectives of these couples, highlighting the need for appropriate counseling and timely information provision.


Assuntos
Reprodução , Sêmen , Gravidez , Feminino , Criança , Humanos , Masculino , Triagem de Portadores Genéticos , Estudos Prospectivos , Inquéritos e Questionários , Estudos Longitudinais
4.
Sci Adv ; 10(5): eadk8173, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295165

RESUMO

The tendency for proteins to form aggregates is an inherent part of every proteome and arises from the self-assembly of short protein segments called aggregation-prone regions (APRs). While posttranslational modifications (PTMs) have been implicated in modulating protein aggregation, their direct role in APRs remains poorly understood. In this study, we used a combination of proteome-wide computational analyses and biophysical techniques to investigate the potential involvement of PTMs in aggregation regulation. Our findings reveal that while most PTM types are disfavored near APRs, N-glycosylation is enriched and evolutionarily selected, especially in proteins prone to misfolding. Experimentally, we show that N-glycosylation inhibits the aggregation of peptides in vitro through steric hindrance. Moreover, mining existing proteomics data, we find that the loss of N-glycans at the flanks of APRs leads to specific protein aggregation in Neuro2a cells. Our findings indicate that, among its many molecular functions, N-glycosylation directly prevents protein aggregation in higher eukaryotes.


Assuntos
Agregados Proteicos , Proteoma , Glicosilação , Proteoma/química , Peptídeos/química , Processamento de Proteína Pós-Traducional
5.
Mol Genet Metab Rep ; 38: 101057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469096

RESUMO

The authors report the natural history of three patients with late-diagnosed Classic Galactosemia (CG) (at 16, 19 and 28 years). This was due to a combination of factors: absence of neonatal screening, absence of some typical acute neonatal symptoms, and negative galactosemia screening. This report underlines the value of neonatal screening and the importance of further diagnostic testing in case of late-onset manifestations.

6.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948797

RESUMO

Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA