Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
New Phytol ; 210(4): 1244-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26840406

RESUMO

Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.


Assuntos
Cádmio/toxicidade , Magnoliopsida/fisiologia , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Luz , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/efeitos da radiação , Superóxidos/metabolismo
2.
Plant Physiol ; 163(3): 1396-408, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24058164

RESUMO

Although arsenic (As) is a common pollutant worldwide, many questions about As metabolism in nonhyperaccumulator plants remain. Concentration- and tissue-dependent speciation and distribution of As was analyzed in the aquatic plant Ceratophyllum demersum to understand As metabolism in nonhyperaccumulator plants. Speciation was analyzed chromatographically (high-performance liquid chromatography-[inductively coupled plasma-mass spectrometry]-[electrospray ionization-mass spectrometry]) in whole-plant extracts and by tissue-resolution confocal x-ray absorption near-edge spectroscopy in intact shock-frozen hydrated leaves, which were also used for analyzing cellular element distribution through x-ray fluorescence. Chromatography revealed up to 20 As-containing species binding more than 60% of accumulated As. Of these, eight were identified as thiol-bound (phytochelatins [PCs], glutathione, and cysteine) species, including three newly identified complexes: Cys-As(III)-PC2, Cys-As-(GS)2, and GS-As(III)-desgly-PC2. Confocal x-ray absorption near-edge spectroscopy showed arsenate, arsenite, As-(GS)3, and As-PCs with varying ratios in various tissues. The epidermis of mature leaves contained the highest proportion of thiol (mostly PC)-bound As, while in younger leaves, a lower proportion of As was thiol bound. At higher As concentrations, the percentage of unbound arsenite increased in the vein and mesophyll of young mature leaves. At the same time, x-ray fluorescence showed an increase of total As in the vein and mesophyll but not in the epidermis of young mature leaves, while this was reversed for zinc distribution. Thus, As toxicity was correlated with a change in As distribution pattern and As species rather than a general increase in many tissues.


Assuntos
Arsênio/metabolismo , Magnoliopsida/metabolismo , Extratos Vegetais/análise , Folhas de Planta/metabolismo , Arsênio/química , Cromatografia Líquida de Alta Pressão , Cisteína/química , Cisteína/metabolismo , Glutationa/química , Glutationa/metabolismo , Magnoliopsida/química , Fitoquelatinas/química , Fitoquelatinas/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia por Absorção de Raios X
3.
Analyst ; 137(8): 1956-62, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22398506

RESUMO

Fast capillary electrophoresis (CE) hyphenated to time-of-flight mass spectrometry (TOF-MS) of four organoarsenic species (glycerol oxoarsenosugar, sulfate oxoarsenosugar, arsenobetaine, arsenocholine) are presented using short length CE capillaries under high electric field strengths of up to 1.3 kV cm(-1) with small inner diameter (ID). The separation of arsenosugars by CE is demonstrated for the first time. An aqueous formic acid solution was employed as the background electrolyte (BGE) for the separation. Various acid concentrations were evaluated for their influence on migration times, separation efficiency as well as with regard to controlling the charge of the arsenic species. A 0.1 M formic acid/ammonium formate buffer (pH 2.8) proved to be suitable for the separation of the four species. A non-aqueous BGE was tested as an alternative buffer system for fast speciation analysis. Separation of arsenobetaine and arsenocholine could even be achieved within 10 s by pressure-assisted CE. Application of the optimized method for the analysis of extracts of a seagrass and a Wakame algae sample as well as the brown algae homogenate reference material IAEA-140/TM revealed a clear signal for the glycerol arsenosugar.


Assuntos
Arsênio/análise , Eletroforese Capilar/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Arsênio/classificação , Soluções Tampão , Pressão
4.
Environ Sci Technol ; 46(6): 3281-7, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22339623

RESUMO

A test kit based on living, lyophilized bacterial bioreporters emitting bioluminescence as a response to arsenite and arsenate was applied during a field campaign in six villages across Bangladesh. Bioreporter field measurements of arsenic in groundwater from tube wells were in satisfying agreement with the results of spectroscopic analyses of the same samples conducted in the lab. The practicability of the bioreporter test in terms of logistics and material requirements, suitability for high sample throughput, and waste disposal was much better than that of two commercial chemical test kits that were included as references. The campaigns furthermore demonstrated large local heterogeneity of arsenic in groundwater, underscoring the use of well switching as an effective remedy to avoid high arsenic exposure.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental/métodos , Escherichia coli/genética , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Arsênio/análise , Bangladesh , Proteínas de Escherichia coli/genética , Liofilização , Genes Reporter , Transativadores/genética
5.
J Sep Sci ; 33(6-7): 817-25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20222073

RESUMO

Zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) was used to study the retention of selected organoarsenicals. The retention behavior of nine organic arsenic species on ZIC-HILIC was investigated to elucidate which is the driving force for their separation, hydrophilic partitioning or adsorption driven by hydrogen bonds with surface H-donor/acceptor groups of the stationary phase. For this, the retention factor of the compounds k was correlated with log P(O/W) and with the calculated strength of hydrogen bonding of the analytes. By examining aliphatic and phenylic compounds separately, improved correlation was received. This indicates that both phenomena contribute to the separation of these arsenic species on ZIC-HILIC. The results obtained evidence that considerable electrostatic interactions also occur on ZIC-HILIC. Retention behavior of arsenic species was investigated by varying the separation conditions, which shows that the composition of the eluent has a strong influence on the retention behavior. It is highly dependent on water/acetonitrile ratio, pH value and salt additives. Dissociation degree and polarity of arsenic species, which are varying with pH, regulate the distribution of arsenic species between stationary and mobile phases in HILIC. Increase in the ammonium acetate concentration leads to shortened or to prolonged retention depending on the structure of the arsenic species.


Assuntos
Arsênio/química , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray
6.
Anal Bioanal Chem ; 390(7): 1707-15, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18259734

RESUMO

Combined detection by inductively coupled mass spectrometry (ICP-MS) for elemental information (quantification) and electrospray ionization mass spectrometry (ESI-MS) for molecular information (identification) by means of splitting of the eluent after chromatographic separation is a suitable means of analysis for unknown and not commercially available arsenic species. Simultaneous parallel ESI-MS and ICP-MS detection was applied to identify possible metabolites during the interaction of arsenobetaine (AsB) with natural zeolites. AsB, mainly produced by freshwater and marine organisms, is known to be a candidate of low toxicity. To estimate the possible toxicological risk originating from AsB in contact with natural and synthetic zeolites, small particles of a naturally occurring zeolite were mixed with an AsB solution. After a contact time of 56 days the degradation of AsB proceeded with different yields in the case of the natural Mexican zeolites. In contrast, no additional components were detected in the control samples. It was possible to clearly identify the degradation products dimethylarsinate (m/z 139) and dimethylarsinoylacetate (m/z 181) by comparison of the peaks monitored by ESI-MS and ICP-MS. In some other cases the unknown arsenic species could not be identified so clearly from their molecular masses.


Assuntos
Arsenicais/análise , Arsenicais/metabolismo , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Zeolitas/química , Arsenicais/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/instrumentação , Ácido Nítrico/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
7.
Bioelectrochemistry ; 71(1): 33-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16987714

RESUMO

Biosensors based on DNA and DNA-carbon nanotubes film immobilized at the surface of a screen-printed carbon electrode were used for simple in vitro tests of chemical toxicity. The damage to DNA caused by tin(II) and arsenic(III) compounds as components of specific reaction media was evaluated by means of an electrochemical DNA marker, [Co(phen)3](3+), as the portion of original dsDNA which survives an incubation of the biosensor in the cleavage medium. The results were confirmed by the electrically heated electrode and by the measurement of the DNA guanine moiety signal.


Assuntos
Arsênio/química , Técnicas Biossensoriais/métodos , DNA/química , Nanoestruturas/química , Nanotubos de Carbono/química , Estanho/química , Testes de Toxicidade/métodos , Técnicas Biossensoriais/instrumentação , Cátions , DNA/metabolismo , Eletroquímica , Eletrodos , Guanina/análogos & derivados , Guanina/metabolismo , Compostos Organometálicos/química , Fenantrolinas/química , Temperatura , Testes de Toxicidade/instrumentação
8.
J Environ Qual ; 36(6): 1811-20, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17965384

RESUMO

Arsenate (As V) is the predominant form of arsenic in soils under aerobic conditions and competes with the major plant nutrient phosphorus (P) in the form of phosphate (PV) not only for sorption sites on mineral surfaces in soil but also for root membrane transporters. Plants have evolved several mechanisms for the mobilization of PV in soils in response to P deficiency, such as the release of organic anions and protons. The aim of the present study was to test whether these mechanisms result in a simultaneous mobilization of arsenate and what would be the consequences for As transfer from soil to plant. The compartment system approach with Zea mays as model crop was chosen as an experimental setup. The system is equipped with micro suction cups and allowed us to investigate processes occurring in the vicinity of roots. As a case study, an artificial quartz substrate with well defined soil physical properties was fertilized, spiked with As V, and amended with increasing amounts of goethite (0, 1, and 4 g kg(-1) in treatments G-0, G-1, and G-4, respectively). The addition of goethite alleviated the As V-induced growth reduction and reduced As V transfer from the substrate to the plant but induced P deficiency at the same time. When low amounts of goethite (1 g kg(-1)) were added, plants mobilized PV but not As V, which might be related to differences in surface complexation reported for PV and As V. No mobilization of PV or As V was observed with the addition of higher amounts of goethite, probably because of decreasing competition between organic anions, PV, and As V for binding sites.


Assuntos
Arseniatos/metabolismo , Compostos de Ferro/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Minerais , Quartzo , Solo , Zea mays/metabolismo
9.
Sci Rep ; 7: 40522, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094280

RESUMO

Environmental contamination of arsenic (As) and its accumulation in rice (Oryza sativa L.) is of serious human health concern. In planta speciation of As is an important tool to understand As metabolism in plants. In the present study, we investigated root to shoot As translocation and speciation in rice exposed to inorganic and methylated As. Arsenate (AsV) and methylarsonate (MAV) were efficiently reduced to arsenite (AsIII) and MAIII, respectively in rice root and shoot but no trivalent form of dimethylarsinate (DMAV) was detected. Further, up to 48 and 83% of root As in AsV and MAV exposed plants, respectively were complexed with various thiols showing up to 20 and 16 As species, respectively. Several mixed As- and MA-complexes with hydroxymethyl-phytochelatin, DesGly-phytochelatin, hydroxymethyl-GSH and cysteine were identified in rice. Despite high complexation in roots, more As was translocated to shoots in MAV exposed plants than AsV, with shoot/root As transfer factor being in order DMAV > MAV > AsV. Moreover, in shoots 78% MAIII and 71% AsIII were present as weakly bound species which is alarming, as MAIII has been found to be more cytotoxic than AsIII for human and it could also be an important factor inducing straighthead (spikelet sterility disorder) in rice.


Assuntos
Arsênio/metabolismo , Oryza/metabolismo , Brotos de Planta/metabolismo , Compostos de Sulfidrila/metabolismo , Cromatografia por Troca Iônica , Humanos , Espectrometria de Massas , Metabolômica/métodos , Oryza/crescimento & desenvolvimento
10.
Environ Sci Pollut Res Int ; 24(12): 10929-10938, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27328673

RESUMO

Sulfonated reactive azo dyes, such as Reactive Orange 107, are extensively used in textile industries. Conventional wastewater treatment systems are incapable of degrading and decolorizing reactive azo dyes completely from effluents, because of their stability and resistance to aerobic biodegradation. However, reactive azo dyes are degradable under anaerobic conditions by releasing toxic aromatic amines. To clarify reaction mechanisms and the present toxicity, the hydrolyzed Reactive Orange 107 was treated in anaerobic-aerobic two-step batch experiments. Sulfonated transformation products were identified employing coupled ICP-MS and Q-TOF-MS measurements. Suspected screening lists were generated using the EAWAG-BBD. The toxicity of the reactor content was determined utilizing online measurements of the inhibition of Vibrio fischeri. The OCHEM web platform for environmental modeling was instrumental in the estimations of the environmental impact of generated transformation products.


Assuntos
Compostos Azo/análise , Corantes/análise , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise , Aliivibrio fischeri/efeitos dos fármacos , Biodegradação Ambiental , Ésteres do Ácido Sulfúrico/análise
11.
Environ Sci Pollut Res Int ; 24(9): 8164-8175, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28144867

RESUMO

Three carbon samples were employed in this work, including commercial (1690 m2 g-1), activated carbon prepared from guava seeds (637 m2 g-1), and activated carbon prepared from avocado kernel (1068 m2 g-1), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H3PO4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.


Assuntos
Carbono/química , Meios de Contraste/química , Gadolínio DTPA/química , Meglumina/química , Compostos Organometálicos/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Urina/química , Poluição da Água/prevenção & controle
12.
Aquat Toxicol ; 177: 226-36, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27309311

RESUMO

Essential trace elements (Cu(2+), Zn(2+), etc) lead to toxic effects above a certain threshold, which is a major environmental problem in many areas of the world. Here, environmentally relevant sub-micromolar concentrations of Cu(2+) and simulations of natural light and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum a s a model for plant shoots. In this low irradiance study resembling non-summer conditions, growth was optimal in the range 7.5-35nM Cu, while PSII activity (Fv/Fm) was maximal around 7.5nM Cu. Damage to the light harvesting complex of photosystem II (LHCII) was the first target of Cu toxicity (>50nM Cu) where Cu replaced Mg in the LHCII-trimers. This was associated with a subsequent decrease of Chl a as well as heat dissipation (NPQ). The growth rate was decreased from the first week of Cu deficiency. Plastocyanin malfunction due to the lack of Cu that is needed for its active centre was the likely cause of diminished electron flow through PSII (ΦPSII). The pigment decrease added to the damage in the photosynthetic light reactions. These mechanisms ultimately resulted in decrease of starch and oxygen production.


Assuntos
Cobre/toxicidade , Magnoliopsida/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Biomarcadores/metabolismo , Cobre/química , Cobre/deficiência , Luz , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Proteoma/metabolismo , Proteômica , Testes de Toxicidade , Poluentes Químicos da Água/química
13.
Environ Pollut ; 208(Pt B): 458-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552521

RESUMO

Arsenic and mercury are frequent contaminants in the environment and care must be taken to limit their entrance into the food chain. The toxicity of both elements strongly depends upon their speciation. Total amounts of As and Hg as well as their species were analyzed in muscle and liver of 26 fishes of seven freshwater fish species caught in the River Elbe. The median concentrations of As were 162 µg kg(-1) w.w. in liver and 92 µg kg(-1) w.w. in muscle. The median concentrations of total Hg were 241 µg kg(-1) w.w. in liver and 256 µg kg(-1) w.w. in muscle. While this level of Hg contamination of the freshwater fish in the River Elbe is significantly lower than 20 years ago, it exceeds the recommended environmental quality standard of 20 µg Hg kg(-1) w.w. by a factor of 5-50. However, the European maximum level of 500 µg Hg kg(-1) for fish for human consumption is rarely exceeded. Arsenic-containing fatty acids and hydrocarbons were determined and partially identified in methanolic extracts of the fish by HPLC coupled in parallel to ICP-MS (element specific detection) and ESI-Q-TOF-MS (molecular structure detection). While arsenobetaine was the dominant As species in the fish, six arsenolipids were detected and identified in the extracts of liver tissue in common bream (Abramis brama), ide (Leuciscus idus), asp (Aspius aspius) and northern pike (Esox lucius). Four arsenic-containing fatty acids (AsFA) and two arsenic-containing hydrocarbons (AsHC) are reported in freshwater fish for the first time. With respect to mercury the more toxic MeHg(+) was the major species in muscle tissue (>90% of total Hg) while in liver Hg(2+) and MeHg(+) were of equal importance. The results show the high relevance of element speciation in addition to the determination of total element concentrations to correctly assess the burden of these two elements in fish.


Assuntos
Arsênio/análise , Ácidos Graxos/química , Peixes , Mercúrio/análise , Compostos de Metilmercúrio/análise , Animais , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento Ambiental , Alemanha , Hidrocarbonetos/química , Fígado/química , Músculos/química , Rios
14.
Water Res ; 39(17): 4073-82, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16182337

RESUMO

Weathering and internal dissolution processes in mining waste materials may mobilize elevated levels of arsenic (As), contaminating ground and surface waters. Treating the polluted waters with iron oxyhydroxides is an established remediation method. By contrast, little knowledge is available to stabilize As in source materials by treating it with Fe precipitates and, on this way, to prevent the generation of polluted waters. In the present work the efficiency of Fe(II) treatment on As immobilization in a tailings material (TM) was studied with regard to the Fe:As molar ratio, the influence of CaCO3 amendment, and the As desorption at continued intensive leaching of Fe-treated TM. Fe precipitates were created by aerobic treatment of TM with Fe(II)sulfate at several Fe:As molar ratios with or without adding CaCO3, followed by aging the Fe-treated TM. The As retention in the treated tailings was studied by 4-fold elution with water, and the As desorption kinetics was examined by suspension leaching in laboratory microcosms over 3 weeks. Fe(II) treatment of TM reduced the water-extractable total As to <10 microg/L as the Fe:As molar ratio increased from 0 to 8. The water-soluble As of Fe-treated tailings could be reduced to 10-30 microg/L also under conditions of intensive leaching. Stabilizing the pH with CaCO3 resulted in consistently higher As release. The As desorption data followed the first-order kinetics in the early time stages of the desorption whereas at longer times the parabolic diffusion model was valid.


Assuntos
Arsênio/química , Compostos Ferrosos/química , Mineração , Poluentes Químicos da Água , Resíduos Industriais , Cinética
15.
Environ Pollut ; 204: 32-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25898235

RESUMO

Rare earth elements (REE) are expected to become pollutants by enriching in the environment due to their wide applications nowadays. The uptake and distribution of gadolinium and yttrium and its influence on biomass production and nutrient balance was investigated in hydroponic solution experiments with maize plants using increasing application doses of 0.1, 1 and 10 mg L(-1). It could be shown that concentrations of up to 1 mg L(-1) of Gd and Y did not reduce or enhance the plant growth or alter the nutrient balance. 10 mg L(-1) Gd or Y resulted in REE concentrations of up to 1.2 weight-% in the roots and severe phosphate deficiency symptoms. Transfer rates showed that there was only little transport of Gd and Y from roots to shoots. Significant correlations were found between the concentration of Gd and Y in the nutrient solution and the root tissue concentration of Ca, Mg and P.


Assuntos
Gadolínio/toxicidade , Ítrio/toxicidade , Zea mays/efeitos dos fármacos , Biomassa , Cálcio/metabolismo , Hidroponia , Magnésio/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
16.
Chemosphere ; 56(3): 305-13, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15172603

RESUMO

Uptake and metabolisation of arsenic as a function of both the plant type and the chemical form of arsenic were examined. For this purpose two different plant species (Silene vulgaris and Plantago major) were selected that differed in their vitality and accumulation behaviour on arsenic-loaded substrates. The plants were cultivated on soil and irrigated with aqueous solutions of an inorganic arsenic compound (arsenious acid) and an organic compound (dimethylarsinate). The arsenic species accumulated in the parts of the plants above ground were extracted by PLE and determined using IC-ICP-MS. The concentrations and metabolisation products of arsenic found in the extracts indicate different mechanisms of arsenic uptake and transformation in both angiosperms. The arsenic species pattern showed that S. vulgaris was more arsenic--tolerable than P. major which is attributed to a low arsenate to arsenite concentration ratio in the plant compartments. S. vulgaris was also able to demethylate and reduce dimethylarsinate to form arsenite in a high extent. P. major accumulated only eight times lower concentration of arsenic, and the arsenate to arsenite concentration ratio shifted to higher values. Metabolisation products of dimethylarsinate did not occur under the present experimental conditions. The vitality of the angiosperms seems to be very dependent on the ability of the plant to reduce arsenate to arsenite.


Assuntos
Magnoliopsida/metabolismo , Arseniatos/metabolismo , Arsenitos/metabolismo , Espectrometria de Massas , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantago/crescimento & desenvolvimento , Plantago/metabolismo , Solo/análise , Poluentes do Solo/análise , Soluções
17.
J Mass Spectrom ; 49(11): 1148-55, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25395130

RESUMO

Phytochelatins (PC) are cystein-rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno-PC (As-PC) with PC of different degree of oligomerization (PC2-PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. As-PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As-PC does not follow the established pattern of peptides but is governed by the formation of series of As-containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As-PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As-PC and may be suited for a screening for As-PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As-PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring.


Assuntos
Arsênio/química , Fitoquelatinas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão , Modelos Moleculares
18.
Metallomics ; 5(10): 1377-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23868355

RESUMO

The heavy metal cadmium (Cd) is highly toxic to plants. To understand the mechanisms of tolerance and resistance to Cd, we treated the rootless, submerged macrophyte Ceratophyllum demersum L. with sub-micromolar concentrations of Cd under environmentally relevant conditions. X-ray fluorescence measurements revealed changing distribution patterns of Cd and Zn at non-toxic (0.2 nM, 2 nM), moderately toxic (20 nM) and highly toxic (200 nM) levels of Cd. Increasing Cd concentrations led to enhanced sequestration of Cd into non-photosynthetic tissues like epidermis and vein. At toxic Cd concentrations, Zn was redistributed and mainly found in the vein. Cd treatment induced the synthesis of phytochelatins (PCs) in the plants, with a threshold of induction already at 20 nM Cd for PC3. In comparison, in plants treated with Cu, elevated PC levels were detected only at the highest concentrations (100-200 nM Cu). Our results show that also non-accumulators like C. demersum store toxic metals in tissues where the heavy metal interferes least with metabolic pathways, but remaining toxicity interferes with micronutrient distribution. Furthermore, we found that the induction of phytochelatins is not proportional to metal concentration, but has a distinct threshold, specific for each PC species. Finally we could show that 20 nM Cd, which was previously regarded as non-toxic to most plants, already induces detoxifying mechanisms.


Assuntos
Cádmio/isolamento & purificação , Cádmio/toxicidade , Magnoliopsida/metabolismo , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Fluorescência , Magnoliopsida/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fitoquelatinas/metabolismo , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray , Espectrometria por Raios X , Fatores de Tempo
19.
Food Chem ; 141(3): 3093-102, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871064

RESUMO

The present study was focused on the determination and identification of arsenic species in methanolic extracts of cod liver. Arsenic species were fractionated and the fractions analysed by RP-HPLC-ICP-MS coupled with ESI-Q-TOF-MS. The total concentration of arsenic in the fresh cod liver was analysed by ICP-MS to be 1.53±0.02 mg As kg(-1)w.w. and the extraction recovery was ca. 100% and the column recovery >93%. Besides polar inorganic and methylated arsenic species (>70%) more hydrophobic arsenic-containing fatty acids and hydrocarbons occurred. Based on the mass spectrometric data proposals for molecular structures were elaborated for 20 of the organic As species included 10 arsenic-containing fatty acids (AsFA) and an arsenic-containing hydrocarbon (AsHC) mentioned for the first time in fresh cod liver. Arsenobetaine was found as main water-soluble arsenic compound in cod liver followed by higher molecular mass arsenic-containing fatty acids and hydrocarbons.


Assuntos
Arsênio/química , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Fígado/química , Alimentos Marinhos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Arsênio/isolamento & purificação , Gadus morhua , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
Talanta ; 99: 310-5, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22967557

RESUMO

A set of organoarsenicals were identified in aqueous phenylarsonic acid (PA) and o-arsanilic acid (AA) solutions treated with soil of volcanic origin in batch systems. The transformation products were separated by liquid chromatography (RP-LC) and identified with element selective inductively coupled plasma-mass spectrometry (ICP-MS) as well as molecular selective electrospray ionization-mass spectrometry (ESI-MS) detection after their HPLC separation. The identification of the main degradation products by means of ESI-MS, ESI-MS/MS and ESI-TOF-MS showed the occurrence of nitrophenylarsonic acid and methylphenylarsinic acid in the solutions containing AA and PA in contact with soils, respectively. Using irradiation of PA solution with visible light, new compounds related from PA appeared with increasing irradiation times which were identified as 4-hydroxyphenylarsonic acid, 3-hydroxyphenylarsonic acid and 2-hydroxyphenylarsonic acid. Additionally, a dihydroxyphenylarsonic compound was identified as impurity of PA.


Assuntos
Ácido Arsanílico/análise , Ácido Arsanílico/química , Arsenicais/análise , Arsenicais/química , Solo/química , Erupções Vulcânicas , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA