RESUMO
In addition to its use in the fertilizer and chemical industries1, ammonia is currently seen as a potential replacement for carbon-based fuels and as a carrier for worldwide transportation of renewable energy2. Implementation of this vision requires transformation of the existing fossil-fuel-based technology for NH3 production3 to a simpler, scale-flexible technology, such as the electrochemical lithium-mediated nitrogen-reduction reaction3,4. This provides a genuine pathway from N2 to ammonia, but it is currently hampered by limited yield rates and low efficiencies4-12. Here we investigate the role of the electrolyte in this reaction and present a high-efficiency, robust process that is enabled by compact ionic layering in the electrode-electrolyte interface region. The interface is generated by a high-concentration imide-based lithium-salt electrolyte, providing stabilized ammonia yield rates of 150 ± 20 nmol s-1 cm-2 and a current-to-ammonia efficiency that is close to 100%. The ionic assembly formed at the electrode surface suppresses the electrolyte decomposition and supports stable N2 reduction. Our study highlights the interrelation between the performance of the lithium-mediated nitrogen-reduction reaction and the physicochemical properties of the electrode-electrolyte interface. We anticipate that these findings will guide the development of a robust, high-performance process for sustainable ammonia production.
RESUMO
Thermal energy storage technologies utilizing phase change materials (PCMs) that melt in the intermediate temperature range, between 100 and 220 °C, have the potential to mitigate the intermittency issues of wind and solar energy. This technology can take thermal or electrical energy from renewable sources and store it in the form of heat. This is of particular utility when the end use of the energy is also as heat. For this purpose, the material should have a phase change between 100 and 220 °C with a high latent heat of fusion. Although a range of PCMs are known for this temperature range, many of these materials are not practically viable for stability and safety reasons, a perspective not often clear in the primary literature. This review examines the recent development of thermal energy storage materials for application with renewables, the different material classes, their physicochemical properties, and the chemical structural origins of their advantageous thermal properties. Perspectives on further research directions needed to reach the goal of large scale, highly efficient, inexpensive, and reliable intermediate temperature thermal energy storage technologies are also presented.
RESUMO
Carbohydrate moieties were combined with various cross-linkable anions (thiocyanate [SCN], tetracyanoborate [TCB], tricyanomethanide [TCM], and dicyanamide [DCA]) and investigated as precursors for the synthesis of nitrogen-doped and nitrogen-/sulfur-co-doped carbons. The influence of the molecular structures of the precursors on their thermophysical properties and the properties of the derived carbon materials was elucidated and compared to petroleum-derived analogs. A carbohydrate-based ionic liquid featuring an [SCN] anion yielded more carbon residues upon carbonization than its 1-ethyl-3-methylimidazolium analog, and the resulting dual-doping of the derived carbon material translated to enhanced catalytic activity in the oxygen reduction reaction.
Assuntos
Carbono/química , Líquidos Iônicos/química , Ânions/químicaRESUMO
Low solubility of terephthalic acid in common solvents makes its industrial production very difficult and not environmentally benign. Ionic liquids are known for their extraordinary solvent properties, with capability to dissolve a wide variety of materials, from common solvents to cellulose, opening new possibilities to find more suitable solvents for terephthalic acid. This work presents studies on the solubility of terephthalic acid in ionic liquids, and demonstrates that terephthalic acid is soluble in ionic liquids, such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium acetate, and dialkylimidazolium chlorides up to four times higher than in DMSO. Additionally, the temperature effect and correlation of ionic liquid structure with solubility efficiency are discussed.
Assuntos
Líquidos Iônicos/química , Ácidos Ftálicos/química , Ânions , Cátions , Solubilidade , Solventes/químicaRESUMO
This work reports on the first solvate ionic liquids (SILs) based on aluminium(III) and gallium(III) triflates, M(OTf)3, and triglyme (G3). Liquid-phase speciation of these new SILs was studied by multinuclear NMR spectroscopy. Across the compositional range of G3 : M(OTf)3 mixtures, both metals were found to be in a hexacoordinate environment, with both G3 and [OTf]- ligands present in the first coordination sphere, and apparently exchanging through a dynamic equilibrium. The Lewis acidity was quantified by the Gutmann acceptor number (AN) and compared to the performance of SILs as Lewis acidic catalysts in model [3 + 3] cycloadditions. Despite saturated coordination, AN values were relatively high, reaching AN = ca. 71-83 for Al-SILs and ca. 80-93 for Ga-SILs, corroborating the labile nature of the metal-ligand bonding. In a model catalytic reaction, SILs were fully soluble in the reaction mixtures, in contrast to the corresponding triflate salts. The catalytic performance of SILs exceeded that of the corresponding triflate salts, and Ga-SILs were more active than Al-SILs, in agreement with AN measurements. In conclusion, the new Group 13 SILs can be considered as soluble and catalytically active forms of their corresponding metal triflates, with potential uses in catalysis.
RESUMO
Ionic liquids and their various analogues are without doubt the scientific sensation of the last few decades, paving the way to a more sustainable society. Their versatile suite of properties, originating from an almost inconceivably large number of possible cation and anion combinations, allows tuning of the structure to serve a desired purpose. Ionic liquids hence offer a myriad of useful applications from solvents to catalysts, through to lubricants, gas absorbers, and azeotrope breakers. The purpose of this review is to explore the more unexpected of these applications, particularly in the energy space. It guides the reader through the application of ionic liquids and their analogues as i) phase change materials for thermal energy storage, ii) organic ionic plastic crystals, which have been studied as battery electrolytes and in gas separation, iii) key components in the nitrogen reduction reaction for sustainable ammonia generation, iv) as electrolytes in aluminum-ion batteries, and v) in other emerging technologies. It is concluded that there is tremendous scope for further optimizing and tuning of the ionic liquid in its task, subject to sustainability imperatives in line with current global priorities, assisted by artificial intelligence.
RESUMO
Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.
RESUMO
Charge transport properties in single-walled carbon nanotubes (SWCNTs) can be significantly modified through doping, tuning their electrical and thermoelectric properties. In our study, we used more than 40 nitrogen-bearing compounds as dopants and determined their impact on the material's electrical conductivity. The application of nitrogen compounds of diverse structures and electronic configurations enabled us to determine how the dopant nature affects the SWCNTs. The results reveal that the impact of these dopants can often be anticipated by considering their Hammett's constants and pKa values. Furthermore, the empirical observations supported by first-principles calculations indicate that the doping level can be tuned not only by changing the type and the concentration of dopants but also by varying the orientation of nitrogen compounds around SWCNTs.
RESUMO
A dearth of inexpensive means of energy storage is constraining the expansion of intermittent renewable energy sources such as sun and wind. Thermal energy storage technology utilizing phase-change materials (PCMs) is a promising solution, enabling storage of large quantities of thermal energy at a relatively low cost. Guanidinium mesylate, which melts at 208 °C with latent heat of fusion of ΔHf =190â J g-1 is a promising PCM candidate for these applications.[1] Here, studies on guanidinium organic salts were conducted, including heat capacity, thermal conductivity, advanced thermal stability, long-term cycling, and economic analysis. The data place guanidinium mesylate among the best PCMs operating in the 100-220 °C temperature region in terms of thermal energy storage, with total volumetric energy storage measured as 622â MJ m-3 (173â kWh m-3 ). Additionally, it was shown to be stable during cycling, with over 400â cycles performed. Simple economic analysis indicated a cost of 6 USD per MJ of stored thermal energy. This study proves that guanidinium mesylate and potentially other similar salts can be feasible as PCMs for inexpensive energy storage for renewable energy storage applications.
RESUMO
As a result of strict regulations of phthalate plasticizers, alternative non-phthalate forms are desired and increasingly used. This work presents a synthetic method for alternative plasticizers (dialkyl succinates and adipates) via esterification of succinic and adipic acid with alcohols: butan-1-ol and 2-ethylhexan-1-ol. Ionic liquids were synthesized by the reaction of triethylamine with over-equimolar (1:2.7) amounts of sulfuric(VI) acid, which were used as an acidic catalyst and solvent. The two-phase liquid-liquid system was formed during the reaction due to immiscibility of the esters with the ionic liquid. This phenomenon is a driving force of this process, shifting the equilibrium toward the product formation. As a result, dialkyl succinates and adipates were obtained in high yields (99%) and selectivities (>99%), under mild reaction conditions at 70-80 °C and using a 4:1 molar ratio of alcohol to acid and 15 mol% of catalyst. The catalyst was recycled 10 times without any loss of activity. This alternative method is highly competitive: it involves a simple procedure for product isolation as well as a high yield and purity of the resulting esters. These advantages make this method sustainable and promising for industrial applications.
RESUMO
Ammonia (NH3) is a globally important commodity for fertilizer production, but its synthesis by the Haber-Bosch process causes substantial emissions of carbon dioxide. Alternative, zero-carbon emission NH3 synthesis methods being explored include the promising electrochemical lithium-mediated nitrogen reduction reaction, which has nonetheless required sacrificial sources of protons. In this study, a phosphonium salt is introduced as a proton shuttle to help resolve this limitation. The salt also provides additional ionic conductivity, enabling high NH3 production rates of 53 ± 1 nanomoles per second per square centimeter at 69 ± 1% faradaic efficiency in 20-hour experiments under 0.5-bar hydrogen and 19.5-bar nitrogen. Continuous operation for more than 3 days is demonstrated.
RESUMO
Carbon nanotubes (CNTs) are materials with exceptional electrical, thermal, mechanical, and optical properties. Ever since it was demonstrated that they also possess interesting thermoelectric properties, they have been considered a promising solution for thermal energy harvesting. In this study, we present a simple method to enhance their performance. For this purpose, thin films obtained from high-quality single-walled CNTs (SWCNTs) were doped with a spectrum of inorganic and organic halide compounds. We studied how incorporating various halide species affects the electrical conductivity, the Seebeck coefficient, and the Power Factor. Since thermoelectric devices operate under non-ambient conditions, we also evaluated these materials' performance at elevated temperatures. Our research shows that appropriate dopant selection can result in almost fivefold improvement to the Power Factor compared to the pristine material. We also demonstrate that the chemical potential of the starting CNT network determines its properties, which is important for deciphering the true impact of chemical and physical functionalization of such ensembles.
RESUMO
Thermal energy storage technology utilizing phase-change materials (PCMs) can be a promising solution for the intermittency of renewable energy sources. This work describes a novel family of PCMs based on the pyrazolium cation, that operate in the 100-200 °C temperature range, offering safe, inexpensive capacity and low supercooling. Thermal stability and extensive cycling tests of the most promising PCM candidate, pyrazolium mesylate (Tm =168±1 °C, ΔHf =160â J g-1 ±5 %, ΔHtotal v =495â MJ m-3 ±5 %) show potential for its use in thermal storage applications. Additionally, this work discusses the molecular origins of the high thermal energy storage capacity of these ionic materials based on their crystal structures, revealing the importance of hydrogen bonds in PCM performance.
RESUMO
The sodium-ion battery (SIB) is proposed as a complementary technology to today's commercially dominant lithium-ion battery (LIB). While much know-how can be transferred from LIBs to SIBs, adjustments are still necessary, not the least for the electrolytes employed. Here the use of anion amphiprotic ionic liquid (AAIL) based electrolytes is proposed for SIB application. Two different AAILs, based on organic trifluoromethylsulfonylamide (TFSAm) and inorganic HSO4- anions, respectively, doped with NaTFSI salt have been studied, focusing on electrochemical stability and transport properties, complemented by studies of the ion-ion interactions, and final sodium-ion battery performance via stripping/plating vs. sodium metal electrodes.
RESUMO
Coordination complexes of Lewis acidic metal chlorides AlCl3, GaCl3, InCl3, SbCl3, SnCl4, SnCl2, ZnCl2 and TiCl4 with trioctylphosphine (P888) and trioctylphosphine oxide (P888O) were synthesised. All compounds formed liquid coordination complexes (LCCs) at ambient temperature, although decomposition via a redox mechanism was detected in some cases. The Lewis acidity of the metal chlorides (measured in 1,2-dichloroethane solutions) and the LCCs (measured neat) was quantified by using the Gutmann acceptor number (AN) approach. In general, LCCs were equally or more Lewis acidic than the corresponding metal chlorides. The AN values were compared with the catalytic activity of selected LCCs in a model Diels-Alder reaction. Insight into speciation of LCCs was gained using multinuclear NMR spectroscopy, revealing that most LCCs comprised charge-neutral complexes rather than ionic ones. The relationship between the speciation, Lewis acidity (AN scale) and catalytic activity is discussed in detail. This approach reveals several new, promising catalytic systems, such as P888O-InCl3, with Lewis acidity enhanced compared to chloroindate ionic liquids, and P888O-TiCl4, with hydrolytic stability enhanced with respect to neat TiCl4.
RESUMO
Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) have been employed to probe dynamics and charge transport of 1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide ([bvim][NTf2]) confined in native uniaxial AAO pores as well as to study kinetics of radical polymerization of the examined compound as a function of the degree of confinement. Subsequently, the electronic conductivity of the produced polymers was investigated. As observed, polymerization carried out at T = 363 K proceeds faster under confinement with some saturation effect observed for the sample in pores of smaller diameter. Obtained results were discussed in the context of the very recent reports showing that the free volume of the confined material is higher with respect to the bulk one. It was also noted that conductivity of poly[bvim][NTf2] is significantly higher with respect to the macromolecules obtained upon bulk polymerization. Moreover, charge transport of the confined macromolecules is even higher when compared to the bulk monomeric ionic liquid at some thermodynamic conditions. Additionally, the molecular weight, Mw, of the confined-synthesized polymers is significantly higher with respect to the bulk-synthesized material. Interestingly, both parameters, (i) the enhancement of σdc and (ii) the increase in Mw, can be tuned and controlled by the application of the appropriate confinement. Consequently, those results are quite promising in the context of development of the fabrication of polymerized ionic liquids (PILs) nanomaterials with unique properties and morphologies, which can be further easily applied in the field of nanotechnology.