Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2301731120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590419

RESUMO

Fungal pathogens depend on sophisticated gene expression programs for successful infection. A crucial component is RNA regulation mediated by RNA-binding proteins (RBPs). However, little is known about the spatiotemporal RNA control mechanisms during fungal pathogenicity. Here, we discover that the RBP Khd4 defines a distinct mRNA regulon to orchestrate membrane trafficking during pathogenic development of Ustilago maydis. By establishing hyperTRIBE for fungal RBPs, we generated a comprehensive transcriptome-wide map of Khd4 interactions in vivo. We identify a defined set of target mRNAs enriched for regulatory proteins involved, e.g., in GTPase signaling. Khd4 controls the stability of target mRNAs via its cognate regulatory element AUACCC present in their 3' untranslated regions. Studying individual examples reveals a unique link between Khd4 and vacuole maturation. Thus, we uncover a distinct role for an RNA stability factor defining a specific mRNA regulon for membrane trafficking during pathogenicity.


Assuntos
Estabilidade de RNA , Regulon , RNA Mensageiro/genética , Regulon/genética , Regiões 3' não Traduzidas/genética
2.
Plant J ; 115(6): 1716-1728, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337787

RESUMO

Several commercially important secondary metabolites are produced and accumulated in high amounts by glandular trichomes, giving the prospect of using them as metabolic cell factories. Due to extremely high metabolic fluxes through glandular trichomes, previous research focused on how such flows are achieved. The question regarding their bioenergetics became even more interesting with the discovery of photosynthetic activity in some glandular trichomes. Despite recent advances, how primary metabolism contributes to the high metabolic fluxes in glandular trichomes is still not fully elucidated. Using computational methods and available multi-omics data, we first developed a quantitative framework to investigate the possible role of photosynthetic energy supply in terpenoid production and next tested experimentally the simulation-driven hypothesis. With this work, we provide the first reconstruction of specialised metabolism in Type-VI photosynthetic glandular trichomes of Solanum lycopersicum. Our model predicted that increasing light intensities results in a shift of carbon partitioning from catabolic to anabolic reactions driven by the energy availability of the cell. Moreover, we show the benefit of shifting between isoprenoid pathways under different light regimes, leading to a production of different classes of terpenes. Our computational predictions were confirmed in vivo, demonstrating a significant increase in production of monoterpenoids while the sesquiterpenes remained unchanged under higher light intensities. The outcomes of this research provide quantitative measures to assess the beneficial role of chloroplast in glandular trichomes for enhanced production of secondary metabolites and can guide the design of new experiments that aim at modulating terpenoid production.


Assuntos
Sesquiterpenos , Tricomas , Tricomas/metabolismo , Carbono/metabolismo , Terpenos/metabolismo , Sesquiterpenos/metabolismo , Monoterpenos/metabolismo
3.
New Phytol ; 234(2): 578-591, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092009

RESUMO

Diatoms are successful phytoplankton clades able to acclimate to changing environmental conditions, including e.g. variable light intensity. Diatoms are outstanding at dissipating light energy exceeding the maximum photosynthetic electron transfer (PET) capacity via the nonphotochemical quenching (NPQ) process. While the molecular effectors of NPQ as well as the involvement of the proton motive force (PMF) in its regulation are known, the regulators of the PET/PMF relationship remain unidentified in diatoms. We generated mutants of the H+ /K+ antiporter KEA3 in the model diatom Phaeodactylum tricornutum. Loss of KEA3 activity affects the PET/PMF coupling and NPQ responses at the onset of illumination, during transients and in steady-state conditions. Thus, this antiporter is a main regulator of the PET/PMF coupling. Consistent with this conclusion, a parsimonious model including only two free components, KEA3 and the diadinoxanthin de-epoxidase, describes most of the feedback loops between PET and NPQ. This simple regulatory system allows for efficient responses to fast (minutes) or slow (e.g. diel) changes in light environment, thanks to the presence of a regulatory calcium ion (Ca2+ )-binding domain in KEA3 modulating its activity. This circuit is likely tuned by the NPQ-effector proteins, LHCXs, providing diatoms with the required flexibility to thrive in different ocean provinces.


Assuntos
Diatomáceas , Aclimatação , Diatomáceas/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Prótons
4.
BMC Bioinformatics ; 22(1): 203, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879053

RESUMO

BACKGROUND: Computational mathematical models of biological and biomedical systems have been successfully applied to advance our understanding of various regulatory processes, metabolic fluxes, effects of drug therapies, and disease evolution and transmission. Unfortunately, despite community efforts leading to the development of SBML and the BioModels database, many published models have not been fully exploited, largely due to a lack of proper documentation or the dependence on proprietary software. To facilitate the reuse and further development of systems biology and systems medicine models, an open-source toolbox that makes the overall process of model construction more consistent, understandable, transparent, and reproducible is desired. RESULTS AND DISCUSSION: We provide an update on the development of modelbase, a free, expandable Python package for constructing and analysing ordinary differential equation-based mathematical models of dynamic systems. It provides intuitive and unified methods to construct and solve these systems. Significantly expanded visualisation methods allow for convenient analysis of the structural and dynamic properties of models. After specifying reaction stoichiometries and rate equations modelbase can automatically assemble the associated system of differential equations. A newly provided library of common kinetic rate laws reduces the repetitiveness of the computer programming code. modelbase is also fully compatible with SBML. Previous versions provided functions for the automatic construction of networks for isotope labelling studies. Now, using user-provided label maps, modelbase v1.2.3 streamlines the expansion of classic models to their isotope-specific versions. Finally, the library of previously published models implemented in modelbase is growing continuously. Ranging from photosynthesis to tumour cell growth to viral infection evolution, all these models are now available in a transparent, reusable and unified format through modelbase. CONCLUSION: With this new Python software package, which is written in currently one of the most popular programming languages, the user can develop new models and actively profit from the work of others. modelbase enables reproducing and replicating models in a consistent, tractable and expandable manner. Moreover, the expansion of models to their isotopic label-specific versions enables simulating label propagation, thus providing quantitative information regarding network topology and metabolic fluxes.


Assuntos
Modelos Biológicos , Linguagens de Programação , Simulação por Computador , Software , Biologia de Sistemas
5.
Physiol Plant ; 166(1): 392-402, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864189

RESUMO

The photosynthetic electron transport chain (PETC) provides energy and redox equivalents for carbon fixation by the Calvin-Benson-Bassham (CBB) cycle. Both of these processes have been thoroughly investigated and the underlying molecular mechanisms are well known. However, it is far from understood by which mechanisms it is ensured that energy and redox supply by photosynthesis matches the demand of the downstream processes. Here, we deliver a theoretical analysis to quantitatively study the supply-demand regulation in photosynthesis. For this, we connect two previously developed models, one describing the PETC, originally developed to study non-photochemical quenching, and one providing a dynamic description of the photosynthetic carbon fixation in C3 plants, the CBB Cycle. The merged model explains how a tight regulation of supply and demand reactions leads to efficient carbon fixation. The model further illustrates that a stand-by mode is necessary in the dark to ensure that the carbon fixation cycle can be restarted after dark-light transitions, and it supports hypotheses, which reactions are responsible to generate such mode in vivo.


Assuntos
Ciclo do Carbono/fisiologia , Fotossíntese/fisiologia , Transporte de Elétrons/fisiologia , Modelos Teóricos
6.
Biochim Biophys Acta ; 1857(12): 1860-1869, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620066

RESUMO

Plants are permanently exposed to rapidly changing environments, therefore it is evident that they had to evolve mechanisms enabling them to dynamically adapt to such fluctuations. Here we study how plants can be trained to enhance their photoprotection and elaborate on the concept of the short-term illumination memory in Arabidopsis thaliana. By monitoring fluorescence emission dynamics we systematically observe the extent of non-photochemical quenching (NPQ) after previous light exposure to recognise and quantify the memory effect. We propose a simplified mathematical model of photosynthesis that includes the key components required for NPQ activation, which allows us to quantify the contribution to photoprotection by those components. Due to its reduced complexity, our model can be easily applied to study similar behavioural changes in other species, which we demonstrate by adapting it to the shadow-tolerant plant Epipremnum aureum. Our results indicate that a basic mechanism of short-term light memory is preserved. The slow component, accumulation of zeaxanthin, accounts for the amount of memory remaining after relaxation in darkness, while the fast one, antenna protonation, increases quenching efficiency. With our combined theoretical and experimental approach we provide a unifying framework describing common principles of key photoprotective mechanisms across species in general, mathematical terms.


Assuntos
Arabidopsis/efeitos da radiação , Araceae/efeitos da radiação , Luz , Modelos Biológicos , Fotossíntese/efeitos da radiação , Plantas/efeitos da radiação , Zeaxantinas/efeitos da radiação , Adaptação Fisiológica , Arabidopsis/metabolismo , Araceae/metabolismo , Cinética , Plantas/metabolismo , Especificidade da Espécie , Espectrometria de Fluorescência , Zeaxantinas/metabolismo
7.
J Exp Bot ; 68(11): 2667-2681, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28830099

RESUMO

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drastically different timescales from picoseconds to hours. Efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes, including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project, AccliPhot, placing the results in a wider context. The review also highlights the applicability of photosynthetic organisms for industry, particularly with regards to the cultivation of microalgae. It intends to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology.


Assuntos
Aclimatação , Fotossíntese/fisiologia , Plantas , Clorófitas , Modelos Biológicos , Biologia de Sistemas
8.
Biochem Soc Trans ; 43(6): 1133-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614650

RESUMO

Along with the development of several large-scale methods such as mass spectrometry or micro arrays, genome wide models became not only a possibility but an obvious tool for theoretical biologists to integrate and analyse complex biological data. Nevertheless, incorporating the dynamics of photosynthesis remains one of the major challenges while reconstructing metabolic networks of plants and other photosynthetic organisms. In this review, we aim to provide arguments that small-scale models are still a suitable choice when it comes to discovering organisational principles governing the design of biological systems. We give a brief overview of recent modelling efforts in understanding the interplay between rapid, photoprotective mechanisms and the redox balance within the thylakoid membrane, discussing the applicability of a reductionist approach in modelling self-regulation in plants and outline possible directions for further research.


Assuntos
Eucariotos/metabolismo , Modelos Biológicos , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Plantas/metabolismo , Ecossistema , Luz , Redes e Vias Metabólicas/fisiologia , Redes e Vias Metabólicas/efeitos da radiação , Oxirredução/efeitos da radiação , Fotossíntese/efeitos da radiação , Plantas/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
9.
Synth Biol (Oxf) ; 9(1): ysae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086602

RESUMO

Synthetic biology conceptualizes biological complexity as a network of biological parts, devices, and systems with predetermined functionalities and has had a revolutionary impact on fundamental and applied research. With the unprecedented ability to synthesize and transfer any DNA and RNA across organisms, the scope of synthetic biology is expanding and being recreated in previously unimaginable ways. The field has matured to a level where highly complex networks, such as artificial communities of synthetic organisms, can be constructed. In parallel, computational biology became an integral part of biological studies, with computational models aiding the unravelling of the escalating complexity and emerging properties of biological phenomena. However, there is still a vast untapped potential for the complete integration of modelling into the synthetic design process, presenting exciting opportunities for scientific advancements. Here, we first highlight the most recent advances in computer-aided design of microbial communities. Next, we propose that such a design can benefit from an organism-free modular modelling approach that places its emphasis on modules of organismal function towards the design of multispecies communities. We argue for a shift in perspective from single organism-centred approaches to emphasizing the functional contributions of organisms within the community. By assembling synthetic biological systems using modular computational models with mathematical descriptions of parts and circuits, we can tailor organisms to fulfil specific functional roles within the community. This approach aligns with synthetic biology strategies and presents exciting possibilities for the design of artificial communities. Graphical Abstract.

10.
Front Plant Sci ; 12: 750580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745183

RESUMO

During photosynthesis, organisms respond to their energy demand and ensure the supply of energy and redox equivalents that sustain metabolism. Hence, the photosynthetic apparatus can, and in fact should, be treated as an integrated supply-demand system. Any imbalance in the energy produced and consumed can lead to adverse reactions, such as the production of reactive oxygen species (ROS). Reaction centres of both photosystems are known sites of ROS production. Here, we investigate in particular the central role of Photosystem I (PSI) in this tightly regulated system. Using a computational approach we have expanded a previously published mechanistic model of C3 photosynthesis by including ROS producing and scavenging reactions around PSI. These include two water to water reactions mediated by Plastid terminal oxidase (PTOX) and Mehler and the ascorbate-glutathione (ASC-GSH) cycle, as a main non-enzymatic antioxidant. We have used this model to predict flux distributions through alternative electron pathways under various environmental stress conditions by systematically varying light intensity and enzymatic activity of key reactions. In particular, we studied the link between ROS formation and activation of pathways around PSI as potential scavenging mechanisms. This work shines light on the role of alternative electron pathways in photosynthetic acclimation and investigates the effect of environmental perturbations on PSI activity in the context of metabolic productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA