RESUMO
Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.
Assuntos
Avena , Grão Comestível , Genoma de Planta , Avena/genética , Diploide , Grão Comestível/genética , Genoma de Planta/genética , Mosaicismo , Melhoramento Vegetal , TetraploidiaRESUMO
Aegilops umbellulata serve as an important reservoir for novel biotic and abiotic stress tolerance for wheat improvement. However, chromosomal rearrangements and evolutionary trajectory of this species remain to be elucidated. Here, we present a comprehensive investigation into Ae. umbellulata genome by generating a high-quality near telomere-to-telomere genome assembly of PI 554389 and resequencing 20 additional Ae. umbellulata genomes representing diverse geographical and phenotypic variations. Our analysis unveils complex chromosomal rearrangements, most prominently in 4U and 6U chromosomes, delineating a distinct evolutionary trajectory of Ae. umbellulata from wheat and its relatives. Furthermore, our data rectified the erroneous naming of chromosomes 4U and 6U in the past and highlighted multiple major evolutionary events that led to the present-day U-genome. Resequencing of diverse Ae. umbellulata accessions revealed high genetic diversity within the species, partitioning into three distinct evolutionary sub-populations and supported by extensive phenotypic variability in resistance against several races/pathotypes of five major wheat diseases. Disease evaluations indicated the presence of several novel resistance genes in the resequenced lines for future studies. Resequencing also resulted in the identification of six new haplotypes for Lr9, the first resistance gene cloned from Ae. umbellulata. The extensive genomic and phenotypic resources presented in this study will expedite the future genetic exploration of Ae. umbellulata, facilitating efforts aimed at enhancing resiliency and productivity in wheat.
RESUMO
The penstemons are ornamental annual flowering plants native to the Intermountain West and Rocky Mountains and commonly used for urban landscaping. Elite commercial penstemons are generally susceptible to abiotic stresses, including drought, root rot, cold, and high salinity. Firecracker penstemon (Penstemon eatonii), however, is much more tolerant to these stresses than most elite cultivars. Importantly, firecracker penstemon has been reported to hybridize with many other penstemons and therefore provides the opportunity to develop more tolerant elite cultivars through strategic crossing. To facilitate the study and utilization of firecracker penstemon, we sequenced and annotated the genome of a P. eatonii accession collected from Utah, USA. We also performed low-coverage, whole-genome sequencing of 26 additional accessions from three different varieties of P. eatonii. This chromosome-scale genome assembly is the most contiguous and complete Penstemon genome sequenced to date.
RESUMO
BACKGROUND: Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua's diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua's evolutionary novelty. RESULTS: We find that the diploids diverged from their common ancestor 5.5 - 6.3 million years ago and hybridized to form P. annua ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua's B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. CONCLUSIONS: The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding.
Assuntos
Poa , Poa/genética , Elementos de DNA Transponíveis , Melhoramento Vegetal , Genes de Plantas , Poliploidia , Genoma de Planta , Evolução MolecularRESUMO
This corrects the article DOI: 10.1038/nature21370.
RESUMO
Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.
Assuntos
Chenopodium quinoa/genética , Genoma de Planta/genética , Processamento Alternativo/genética , Diploide , Evolução Molecular , Pool Gênico , Anotação de Sequência Molecular , Mutação , Poliploidia , Saponinas/biossíntese , Análise de Sequência de DNA , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS: The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS: The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.
Assuntos
Avena/genética , Cromossomos de Plantas/genética , Genoma de Planta , Diploide , Ligação Genética , Anotação de Sequência Molecular , SinteniaRESUMO
PREMISE OF THE STUDY: Single-copy nuclear loci can provide powerful insights into polyploid evolution. Chenopodium (Amaranthaceae) is a globally distributed genus composed of approximately 50-75 species. The genus includes several polyploid species, some of which are considered noxious agricultural weeds, and a few are domesticated crops. Very little research has addressed their evolutionary origin to date. We construct a phylogeny for Chenopodium based on two introns of the single-copy nuclear locus Salt Overly Sensitive 1 (SOS1) to clarify the relationships among the genomes of the allotetraploid and allohexaploid species, and to help identify their genome donors. METHODS: Diploid species were sequenced directly, whereas homeologous sequences of polyploid genomes were first separated by plasmid-mediated cloning. Data were evaluated in maximum likelihood and Bayesian phylogenetic analyses. KEY RESULTS: Homeologous sequences of polyploid species were found in four clades, which we designate as A-D. Two distinct polyploid lineages were identified: one composed of American tetraploid species with A and B class homeologs and a second composed of Eastern Hemisphere hexaploid species with B, C, and D class homeologs. CONCLUSIONS: We infer that the two polyploid lineages arose independently and that each lineage may have originated only once. The American diploid, C. standleyanum, was identified as the closest living diploid relative of the A genome donor for American tetraploids, including domesticated C. quinoa, and is of potential importance for quinoa breeding. The east Asian diploid species, C. bryoniifolium, groups with American diploid species, which suggests a transoceanic dispersal.
Assuntos
Chenopodium/genética , Genoma de Planta , Proteínas de Plantas/genética , Poliploidia , Chenopodium/classificação , Chenopodium/metabolismo , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNARESUMO
Pitseed goosefoot (Chenopodium berlandieri) is a free-living North American member of an allotetraploid complex that includes the Andean pseudocereal quinoa (C. quinoa). Like quinoa, pitseed goosefoot was domesticated, possibly independently, in eastern North America (subsp. jonesianum) and Mesoamerica (subsp. nuttaliae). To test the utility of C. berlandieri as a resource for quinoa breeding, we produced the whole-genome DNA sequence of PI 433,231, a huauzontle from Puebla, México. The 1.295 Gb genome was assembled into 18 pseudomolecules and annotated using RNAseq data from multiple tissues. Alignment with the v.2.0 genome of Chilean-origin C. quinoa cv. 'QQ74' revealed several inversions and a 4A-6B reciprocal translocation. Despite these rearrangements, some quinoa x pitseed goosefoot crosses produce highly fertile hybrids with faithful recombination, as evidenced by a high-density SNP linkage map constructed from a Bolivian quinoa 'Real-1' × BYU 937 (Texas coastal pitseed goosefoot) F2 population. Recombination in that cross was comparable to a 'Real-1' × BYU 1101 (Argentine C. hircinum) F2 population. Furthermore, SNP-based phylogenetic and population structure analyses of 90 accessions supported the hypothesis of multiple independent domestications and descent from a common 4 × ancestor, with a likely North American Center of Origin.
Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Melhoramento Vegetal/métodos , Genoma de Planta , México , FilogeniaRESUMO
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Assuntos
Genômica , Plantas Daninhas , Plantas Daninhas/genética , Genômica/métodos , Controle de Plantas Daninhas/métodos , Genoma de Planta , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Melhoramento Vegetal/métodosRESUMO
Bromus tectorum L. is arguably the most successful invasive weed in the world. It has fundamentally altered arid ecosystems of the western United States, where it now found on an excess of 20 million hectares. Invasion success is related to avoidance of abiotic stress and human management. Early flowering is a heritable trait utilized by B. tectorum, enabling the species to temporally monopolize limited resources and outcompete the native plant community. Thus, understanding the genetic underpinning of flowering time is critical for the design of integrated management strategies. To study flowering time traits in B. tectorum, we assembled a chromosome scale reference genome for B. tectorum. To assess the utility of the assembled genome, 121 diverse B. tectorum accessions are phenotyped and subjected to a genome wide association study (GWAS). Candidate genes, representing homologs of genes that have been previously associated with plant height or flowering phenology traits in related species are located near QTLs we identified. This study uses a high-resolution GWAS to identify reproductive phenology genes in a weedy species and represents a considerable step forward in understanding the mechanisms underlying genetic plasticity in one of the most successful invasive weed species.
Assuntos
Bromus , Ecossistema , Humanos , Estados Unidos , Bromus/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Adaptação Fisiológica/genéticaRESUMO
Quinoa (Chenopodium quinoa Willd.) is an allotetraploid seed crop with the potential to help address global food security concerns. Genomes have been assembled for four accessions of quinoa; however, all assemblies are fragmented and do not reflect known chromosome biology. Here, we use in vitro and in vivo Hi-C data to produce a chromosome-scale assembly of the Chilean accession PI 614886 (QQ74). The final assembly spans 1.326 Gb, of which 90.5% is assembled into 18 chromosome-scale scaffolds. The genome is annotated with 54,499 protein-coding genes, 96.9% of which are located on the 18 largest scaffolds. We also report an updated genome assembly for the B-genome diploid C. suecicum and use it, together with the A-genome diploid C. pallidicaule, to identify genomic rearrangements within the quinoa genome, including a large pericentromeric inversion representing 71.7% of chromosome Cq3B. Repetitive sequences comprise 65.2%, 48.6%, and 57.9% of the quinoa, C. pallidicaule, and C. suecicum genomes, respectively. Evidence suggests that the B subgenome is more dynamic and has expanded more than the A subgenome. These genomic resources will enable more accurate assessments of genome evolution within the Amaranthaceae and will facilitate future efforts to identify variation in genes underlying important agronomic traits in quinoa.
Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Genoma de Planta , Sequências Repetitivas de Ácido Nucleico , CromossomosRESUMO
Poa annua L. is a globally distributed grass with economic and horticultural significance as a weed and as a turfgrass. This dual significance, and its phenotypic plasticity and ecological adaptation, have made P. annua an intriguing plant for genetic and evolutionary studies. Because of the lack of genomic resources and its allotetraploid (2n = 4x = 28) nature, a reference genome sequence would be a valuable asset to better understand the significance and polyploid origin of P. annua. Here we report a genome assembly with scaffolds representing the 14 haploid chromosomes that are 1.78â Gb in length with an N50 of 112â Mb and 96.7% of BUSCO orthologs. Seventy percent of the genome was identified as repetitive elements, 91.0% of which were Copia- or Gypsy-like long-terminal repeats. The genome was annotated with 76,420 genes spanning 13.3% of the 14 chromosomes. The two subgenomes originating from Poa infirma (Knuth) and Poa supina (Schrad) were sufficiently divergent to be distinguishable but syntenic in sequence and annotation with repetitive elements contributing to the expansion of the P. infirma subgenome.
Assuntos
Poa , Poa/genética , Sequências Repetitivas de Ácido Nucleico , Sintenia , Genoma de Planta , Cromossomos , Anotação de Sequência MolecularRESUMO
BACKGROUND: Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. RESULTS: Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. CONCLUSIONS: Genomic and bioinformatic protocols were successfully implemented to identify 125 nuclear SNPs that are capable of differentiating most subspecies of cutthroat trout from one another. The ability to use this suite of SNPs to identify individuals of unknown genetic background to subspecies can be a valuable tool for management agencies in their efforts to evaluate the genetic structure of cutthroat trout populations prior to constructing and implementing conservation plans.
Assuntos
Código de Barras de DNA Taxonômico/métodos , Genoma/genética , Genômica/métodos , Hibridização Genética , Oncorhynchus/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Sequência de Bases , Biologia Computacional , Pesqueiros/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência MolecularRESUMO
A narrow germplasm base and a complex allotetraploid genome have made the discovery of single nucleotide polymorphism (SNP) markers difficult in cotton (Gossypium hirsutum). To generate sequence for SNP discovery, we conducted a genome reduction experiment (EcoRI, BafI double digest, followed by adapter ligation, biotin-streptavidin purification, and agarose gel separation) on two accessions of G. hirsutum and two accessions of G. barbadense. From the genome reduction experiment, a total of 2.04 million genomic sequence reads were assembled into contigs with an N(50) of 508 bp and analyzed for SNPs. A previously generated assembly of expressed sequence tags (ESTs) provided an additional source for SNP discovery. Using highly conservative parameters (minimum coverage of 8× at each SNP and 20% minor allele frequency), a total of 11,834 and 1,679 non-genic SNPs were identified between accessions of G. hirsutum and G. barbadense in genome reduction assemblies, respectively. An additional 4,327 genic SNPs were also identified between accessions of G. hirsutum in the EST assembly. KBioscience KASPar assays were designed for a portion of the intra-specific G. hirsutum SNPs. From 704 non-genic and 348 genic markers developed, a total of 367 (267 non-genic, 100 genic) mapped in a segregating F(2) population (Acala Maxxa × TX2094) using the Fluidigm EP1 system. A G. hirsutum genetic linkage map of 1,688 cM was constructed based entirely on these new SNP markers. Of the genic-based SNPs, we were able to identify within which genome ('A' or 'D') each SNP resided using diploid species sequence data. Genetic maps generated by these newly identified markers are being used to locate quantitative, economically important regions within the cotton genome.
Assuntos
Mapeamento de Sequências Contíguas , Gossypium/genética , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Tetraploidia , Sequência de Bases , Ligação Genética , Genoma de Planta , Genótipo , Análise de Sequência de DNARESUMO
Bacterial artificial chromosome (BAC) libraries are critical for identifying full-length genomic sequences, correlating genetic and physical maps, and comparative genomics. Here we describe the utilization of the Fluidigm access array genotyping system in conjunction with KASPar genotyping technology to identify individual BAC clones corresponding to specific single-nucleotide polymorphisms (SNPs) from an Amplicon Express seven-plate super pooled Amaranthus hypochondriacus BAC library. Ninety-six SNP loci, spanning the length of A. hypochondriacus linkage groups 1, 2, and 15, were simultaneously tested for clone identification from four BAC super pools, corresponding to 28 384-well plates, using a single Fluidigm integrated fluidic chip (IFC). Forty-six percent of the SNPs were associated with a single unambiguous identified BAC clone. PCR amplification and next-generation sequencing of individual BAC clones confirmed the IFC clone identification. Utilization of the Fluidigm Dynamic array platform allowed for the simultaneous PCR screening of 10,752 BAC pools for 96 SNP tag sites in less than three hours at a cost of ~$0.05 per reaction.
Assuntos
Amaranthus/genética , Cromossomos Artificiais Bacterianos/genética , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Clonagem Molecular , Ligação Genética , Marcadores Genéticos , Testes Genéticos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNARESUMO
PREMISE OF THE STUDY: The dramatic advances offered by modern DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome size, extensive variation in the proportion of organellar DNA in total DNA, polyploidy, and gene number/redundancy contribute to these challenges, and they demand flexible targeted enrichment strategies to achieve the desired goals. METHODS: In this article, we summarize the many available targeted enrichment strategies that can be used to target partial-to-complete organellar genomes, as well as known and anonymous nuclear targets. These methods fall under four categories: PCR-based enrichment, hybridization-based enrichment, restriction enzyme-based enrichment, and enrichment of expressed gene sequences. KEY RESULTS: Examples of plant-specific applications exist for nearly all methods described. While some methods are well established (e.g., transcriptome sequencing), other promising methods are in their infancy (hybridization enrichment). A direct comparison of methods shows that PCR-based enrichment may be a reasonable strategy for accessing small genomic targets (e.g., ≤50 kbp), but that hybridization and transcriptome sequencing scale more efficiently if larger targets are desired. CONCLUSIONS: While the benefits of targeted sequencing are greatest in plants with large genomes, nearly all comparative projects can benefit from the improved throughput offered by targeted multiplex DNA sequencing, particularly as the amount of data produced from a single instrument approaches a trillion bases per run.
Assuntos
Genoma de Cloroplastos , Genoma de Planta , Plantas/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Núcleo Celular/genética , Cloroplastos/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Técnicas de Genotipagem/métodos , Filogenia , Plantas/classificação , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Substantial morphological variation in land plants remains inaccessible to genetic analysis because current models lack variation in important ecological and agronomic traits. The genus Gilia was historically a model for biosystematics studies and includes variation in morphological traits that are poorly understood at the genetic level. We assembled a chromosome-scale reference genome of G. yorkii and used it to investigate genome evolution in the Polemoniaceae. We performed QTL (quantitative trait loci) mapping in a G. yorkii×G. capitata interspecific population for traits related to inflorescence architecture and flower color. The genome assembly spans 2.75 Gb of the estimated 2.80-Gb genome, with 96.7% of the sequence contained in the nine largest chromosome-scale scaffolds matching the haploid chromosome number. Gilia yorkii experienced at least one round of whole-genome duplication shared with other Polemoniaceae after the eudicot paleohexaploidization event. We identified QTL linked to variation in inflorescence architecture and petal color, including a candidate for the major flower color QTL-a tandem duplication of flavanol 3',5'-hydroxylase. Our results demonstrate the utility of Gilia as a forward genetic model for dissecting the evolution of development in plants including the causal loci underlying inflorescence architecture transitions.
Assuntos
Flores , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos , Flores/genética , FenótipoRESUMO
Djulis (Chenopodium formosanum Koidz.) is a crop grown since antiquity in Taiwan. It is a BCD-genome hexaploid (2n = 6x = 54) domesticated form of lambsquarters (C. album L.) and a relative of the allotetraploid (AABB) C. quinoa. As with quinoa, djulis seed contains a complete protein profile and many nutritionally important vitamins and minerals. While still sold locally in Taiwanese markets, its traditional culinary uses are being lost as diets of younger generations change. Moreover, indigenous Taiwanese peoples who have long safeguarded djulis are losing their traditional farmlands. We used PacBio sequencing and Hi-C-based scaffolding to produce a chromosome-scale, reference-quality assembly of djulis. The final genome assembly spans 1.63â Gb in 798 scaffolds, with 97.8% of the sequence contained in 27 scaffolds representing the nine haploid chromosomes of each sub-genome of the species. Benchmarking of universal, single-copy orthologs indicated that 98.5% of the conserved orthologous genes for Viridiplantae are complete within the assembled genome, with 92.9% duplicated, as expected for a polyploid. A total of 67.8% of the assembly is repetitive, with the most common repeat being Gypsy long terminal repeat retrotransposons, which had significantly expanded in the B sub-genome. Gene annotation using Iso-Seq data from multiple tissues identified 75,056 putative gene models. Comparisons to quinoa showed strong patterns of synteny which allowed for the identification of homoeologous chromosomes, and sub-genome-specific sequences were used to assign homoeologs to each sub-genome. These results represent the first hexaploid genome assembly and the first assemblies of the C and D genomes of the Chenopodioideae subfamily.