Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982380

RESUMO

Triple-negative breast cancer has a poor prognosis and is non-responsive to first-line therapies; hence, new therapeutic strategies are needed. Enhanced store-operated Ca2+ entry (SOCE) has been widely described as a contributing factor to tumorigenic behavior in several tumor types, particularly in breast cancer cells. SOCE-associated regulatory factor (SARAF) acts as an inhibitor of the SOCE response and, therefore, can be a potential antitumor factor. Herein, we generated a C-terminal SARAF fragment to evaluate the effect of overexpression of this peptide on the malignancy of triple-negative breast cancer cell lines. Using both in vitro and in vivo approaches, we showed that overexpression of the C-terminal SARAF fragment reduced proliferation, cell migration, and the invasion of murine and human breast cancer cells by decreasing the SOCE response. Our data suggest that regulating the activity of the SOCE response via SARAF activity might constitute the basis for further alternative therapeutic strategies for triple-negative breast cancer.


Assuntos
Proteínas de Membrana , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Transporte de Íons , Citoplasma/metabolismo , Sinalização do Cálcio , Molécula 1 de Interação Estromal/metabolismo
2.
FASEB J ; 34(6): 7847-7865, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301552

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Canais de Potássio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Mama/metabolismo , Mama/patologia , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Células MCF-7 , Prognóstico , Ubiquitina-Proteína Ligases/metabolismo
3.
FASEB J ; 33(8): 9434-9452, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112396

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective cationic channel involved in a wide variety of physiologic and pathophysiological processes. Bioinformatics analyses of the primary sequence of TRPM4 allowed us to identify a putative motif for interaction with end-binding (EB) proteins, which are microtubule plus-end tracking proteins. Here, we provide novel data suggesting that TRPM4 interacts with EB proteins. We show that mutations of the putative EB binding motif abolish the TRPM4-EB interaction, leading to a reduced expression of the mature population of the plasma membrane channel and instead display an endoplasmic reticulum-associated distribution. Furthermore, we demonstrate that EB1 and EB2 proteins are required for TRPM4 trafficking and functional activity. Finally, we demonstrated that the expression of a soluble fragment containing the EB binding motif of TRPM4 reduces the plasma membrane expression of the channel and affects TRPM4-dependent focal adhesion disassembly and cell invasion processes.-Blanco, C., Morales, D., Mogollones, I., Vergara-Jaque, A., Vargas, C., Álvarez, A., Riquelme, D., Leiva-Salcedo, E., González, W., Morales, D., Maureira, D., Aldunate, I., Cáceres, M., Varela, D., Cerda, O. EB1- and EB2-dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion.


Assuntos
Adesões Focais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Biotinilação/fisiologia , Células COS , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Chlorocebus aethiops , Eletrofisiologia , Imunofluorescência , Humanos , Immunoblotting , Proteínas Associadas aos Microtúbulos/genética , Simulação de Dinâmica Molecular , Mutação/genética , Plasmídeos/genética , Canais de Cátion TRPM/genética
4.
Biotechnol Adv ; 64: 108123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868391

RESUMO

Bioelectrochemistry has gained importance in recent years for some of its applications on waste valorization, such as wastewater treatment and carbon dioxide conversion, among others. The aim of this review is to provide an updated overview of the applications of bioelectrochemical systems (BESs) for waste valorization in the industry, identifying current limitations and future perspectives of this technology. BESs are classified according to biorefinery concepts into three different categories: (i) waste to power, (ii) waste to fuel and (iii) waste to chemicals. The main issues related to the scalability of bioelectrochemical systems are discussed, such as electrode construction, the addition of redox mediators and the design parameters of the cells. Among the existing BESs, microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) stand out as the more advanced technologies in terms of implementation and R&D investment. However, there has been little transfer of such achievements to enzymatic electrochemical systems. It is necessary that enzymatic systems learn from the knowledge reached with MFC and MEC to accelerate their development to achieve competitiveness in the short term.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletrólise , Reatores Biológicos , Eletrodos
5.
ChemistryOpen ; 11(11): e202200102, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35856864

RESUMO

This study presents the immobilization with aldehyde groups (glyoxyl carbon felt) of alcohol dehydrogenase (ADH) and formate dehydrogenase (FDH) on carbon-felt-based electrodes. The compatibility of the immobilization method with the electrochemical application was studied with the ADH bioelectrode. The electrochemical regeneration process of nicotinamide adenine dinucleotide in its oxidized form (NAD+ ), on a carbon felt surface, has been deeply studied with tests performed at different electrical potentials. By applying a potential of 0.4 V versus Ag/AgCl electrode, a good compromise between NAD+ regeneration and energy consumption was observed. The effectiveness of the regeneration of NAD+ was confirmed by electrochemical oxidation of ethanol catalyzed by ADH in the presence of NADH, which is the no active form of the cofactor for this reaction. Good reusability was observed by using ADH immobilized on glyoxyl functionalized carbon felt with a residual activity higher than 60 % after 3 batches.


Assuntos
Carbono , NAD , Fibra de Carbono , Eletrodos , Formiato Desidrogenases , Regeneração
6.
Front Oncol ; 11: 621614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178620

RESUMO

Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein-protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA