Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38992416

RESUMO

Due to their tissue structure similar to mammalian skin and their close evolutionary relationship with chordates, holothurians (Echinodermata: Holothuroidea) are particularly interesting for studies on wound healing. However, previous studies dealing with holothuroid wound healing have had limited approaches, being restricted to tissue repair or perivisceral immune response. In this study, we combined tissue, cellular and humoral parameters to study the wound healing process of Holothuria grisea. The immune responses of the perivisceral coelom were assessed by analyzing the number, proportion and viability of coelomocytes and the volume and protein concentration of the coelomic fluid. Additionally, the morphology of the healing tissue and number of coelomocytes in the connective tissue of different body wall layers were examined over 30 days. Our results showed that perivisceral reactions started 3 h after injury and decreased to baseline levels within 24 h. In contrast, tissue responses were delayed, beginning after 12 h and returning to baseline levels only after day 10. The number of coelomocytes in the connective tissue suggests a potential cooperation between these cells during wound healing: phagocytes and acidophilic spherulocytes act together in tissue clearance/homeostasis, whereas fibroblast-like and morula cells cooperate in tissue remodeling. Finally, our results indicate that the major phases observed in mammalian wound healing are also observed in H. grisea, despite occurring at a different timing, which might provide insights for future studies. Based on these data, we propose a model that explains the entire healing process in H. grisea.

2.
Mar Drugs ; 22(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276644

RESUMO

The study of bioactive molecules of marine origin has created an important bridge between biological knowledge and its applications in biotechnology and biomedicine. Current studies in different research fields, such as biomedicine, aim to discover marine molecules characterized by biological activities that can be used to produce potential drugs for human use. In recent decades, increasing attention has been paid to a particular group of marine invertebrates, the Ascidians, as they are a source of bioactive products. We describe omics data and computational methods relevant to identifying the mechanisms and processes of innate immunity underlying the biosynthesis of bioactive molecules, focusing on innovative computational approaches based on Artificial Intelligence. Since there is increasing attention on finding new solutions for a sustainable supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of marine invertebrates' innate immunity.


Assuntos
Produtos Biológicos , Urocordados , Animais , Humanos , Inteligência Artificial , Organismos Aquáticos , Descoberta de Drogas/métodos
3.
J Fish Biol ; 103(3): 727-730, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37148434

RESUMO

The effects of lipopolysaccharide (LPS) on Mif (macrophage migration inhibitory factor) gene expression in the pharynx (haemapoetic tissue) of Ciona robusta were investigated using quantitative reverse-transcription PCR (qRT-PCR) and in situ hybridisation (ISH). To verify the induction of an inflammatory response in the pharynx, a qRT-PCR analysis was performed to evaluate the change in the expression of proinflammatory marker genes such as Mbl, Ptx-like, Tnf-α and Nf-kb, which were shown to be upregulated 1 h post LPS challenge. The change in the expression of the two Mif paralogs in the pharynx was assessed before and after stimulation, and qRT-PCR and ISH results showed that, although Mif2 and Mif2 were expressed in clusters of haemocytes in pharynx vessels, only Mif1 expression increased after LPS stimulation. This indicates that the Mif genes are differently regulated and respond to different ambient inputs that need further analysis.


Assuntos
Ciona intestinalis , Fatores Inibidores da Migração de Macrófagos , Animais , Lipopolissacarídeos/farmacologia , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Faringe/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835523

RESUMO

The Ascidian C. robusta is a powerful model for studying innate immunity. LPS induction activates inflammatory-like reactions in the pharynx and the expression of several innate immune genes in granulocyte hemocytes such as cytokines, for instance, macrophage migration inhibitory factors (CrMifs). This leads to intracellular signaling involving the Nf-kB signaling cascade that triggers downstream pro-inflammatory gene expression. In mammals, the COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) complex also results in the activation of the NF-kB pathway. It is a highly conserved complex in vertebrates, mainly engaged in proteasome degradation which is essential for maintaining processes such as cell cycle, DNA repair, and differentiation. In the present study, we used bioinformatics and in-silico analyses combined with an in-vivo LPS exposure strategy, next-generation sequencing (NGS), and qRT-PCR to elucidate molecules and the temporal dynamics of Mif cytokines, Csn signaling components, and the Nf-κB signaling pathway in C. robusta. A qRT-PCR analysis of immune genes selected from transcriptome data revealed a biphasic activation of the inflammatory response. A phylogenetic and STRING analysis indicated an evolutionarily conserved functional link between the Mif-Csn-Nf-kB axis in ascidian C. robusta during LPS-mediated inflammation response, finely regulated by non-coding molecules such as microRNAs (miRNAs).


Assuntos
Ciona intestinalis , MicroRNAs , Animais , NF-kappa B/metabolismo , Transcriptoma , Lipopolissacarídeos/farmacologia , Filogenia , Transdução de Sinais , Imunidade Inata , Citocinas , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982723

RESUMO

The demand for new molecules to counter bacterial resistance to antibiotics and tumor cell resistance is increasingly pressing. The Mediterranean seagrass Posidonia oceanica is considered a promising source of new bioactive molecules. Polypeptide-enriched fractions of rhizomes and green leaves of the seagrass were tested against Gram-positive (e.g., Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, Escherichia coli), as well as towards the yeast Candida albicans. The aforementioned extracts showed indicative MIC values, ranging from 1.61 µg/mL to 7.5 µg/mL, against the selected pathogens. Peptide fractions were further analyzed through a high-resolution mass spectrometry and database search, which identified nine novel peptides. Some discovered peptides and their derivatives were chemically synthesized and tested in vitro. The assays identified two synthetic peptides, derived from green leaves and rhizomes of P. oceanica, which revealed interesting antibiofilm activity towards S. aureus, E. coli, and P. aeruginosa (BIC50 equal to 17.7 µg/mL and 70.7 µg/mL). In addition, the natural and derivative peptides were also tested for potential cytotoxic and apoptosis-promoting effects on HepG2 cells, derived from human hepatocellular carcinomas. One natural and two synthetic peptides were proven to be effective against the "in vitro" liver cancer cell model. These novel peptides could be considered a good chemical platform for developing potential therapeutics.


Assuntos
Alismatales , Neoplasias , Humanos , Staphylococcus aureus , Escherichia coli , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa , Alismatales/química , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681801

RESUMO

Cytochromes P450 (CYP) are enzymes responsible for the biotransformation of most endogenous and exogenous agents. The expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, and regulation by cytokines and hormones. In recent years, Ciona robusta, one of the closest living relatives of vertebrates, has become a model in various fields of biology, in particular for studying inflammatory response. Using an in vivo LPS exposure strategy, next-generation sequencing (NGS) and qRT-PCR combined with bioinformatics and in silico analyses, compared whole pharynx transcripts from naïve and LPS-exposed C. robusta, and we provide the first view of cytochrome genes expression and miRNA regulation in the inflammatory response induced by LPS in a hematopoietic organ. In C. robusta, cytochromes belonging to 2B,2C, 2J, 2U, 4B and 4F subfamilies were deregulated and miRNA network interactions suggest that different conserved and species-specific miRNAs are involved in post-transcriptional regulation of cytochrome genes and that there could be an interplay between specific miRNAs regulating both inflammation and cytochrome molecules in the inflammatory response in C. robusta.


Assuntos
Ciona intestinalis , Sistema Enzimático do Citocromo P-450 , Inflamação/genética , Animais , Ciona intestinalis/efeitos dos fármacos , Ciona intestinalis/genética , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Família Multigênica/efeitos dos fármacos , Família Multigênica/genética , Faringe/efeitos dos fármacos , Faringe/metabolismo , Faringe/patologia , Filogenia , Transcriptoma/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-31923630

RESUMO

Marine life is extremely sensitive to the effects of environmental noise due to its reliance on underwater sounds for basic life functions, such as searching for food and mating. However, the effects on invertebrate species are not yet fully understood. The aim of this study was to determine the biochemical responses of Arbacia lixula exposed to high-frequency noise. Protein concentration, enzyme activity (esterase, phosphatase and peroxidase) and cytotoxicity in coelomic fluid were compared in individuals exposed for three hours to consecutive linear sweeps of 100 to 200 kHz lasting 1 s, and control specimens. Sound pressure levels ranged between 145 and 160 dB re 1µPa. Coelomic fluid was extracted and the gene and protein expression of HSP70 with RT-PCR was evaluated on coelomocytes. A significant change was found in enzyme activity and in the expression of the HSP70 gene and protein compared to the control. These results suggested that high-frequency stimuli elicit a noise-induced physiological stress response in A. lixula, confirming the vulnerability of this species to acoustic exposure. Furthermore, these findings provide the first evidence that cell-free coelomic fluid can be used as a signal to evaluate noise exposure in marine invertebrates.


Assuntos
Arbacia/fisiologia , Líquidos Corporais/metabolismo , Proliferação de Células , Coelomomyces/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hemólise , Ruído , Fosfatase Alcalina/metabolismo , Animais , Líquidos Corporais/química , Esterases/metabolismo , Proteínas de Choque Térmico HSP70/genética , Homeostase , Metaboloma , Peroxidase/metabolismo
8.
J Acoust Soc Am ; 147(4): 2414, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32359276

RESUMO

Underwater sounds generated by anthropogenic activity can cause behavior changes, temporary loss of hearing, damage to parts of the body, or death in a number of marine organisms and can also affect healing and survival. In this study, the authors examined the effects of high-frequency acoustic stimulations on a number of biochemical parameters in the Mediterranean mussel, Mytilus galloprovincialis. During the experiment, animals were placed in a test tank and exposed to acoustic signals [a linear sweep ranging from 100 to 200 kHz and lasting 1 s, with a sound pressure level range of between 145 and 160 dBrms (re 1µParms)] for 3 h. Total haemocyte count was assessed and glucose levels, cytotoxic activity and enzyme activity (alkaline phosphatase, esterase and peroxidase) in the digestive gland were measured. For the first time, this study suggests that high-frequency noise pollution has a negative impact on biochemical parameters in the digestive gland.


Assuntos
Mytilus , Poluentes Químicos da Água , Estimulação Acústica , Animais
9.
J Acoust Soc Am ; 147(6): 3795, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32611157

RESUMO

Anthropogenic activities are causing increased noise levels in the marine environment. To date, few studies have been undertaken to investigate the effects of different noise frequencies on the behaviour of juvenile fish. In this study, the behavioural changes of juvenile gilthead seabream (Sparus aurata) are evaluated when exposed to white noise filtered in third-octave bands centred at 63, 125, 500, and 1000 Hz (sound pressure level, 140-150 dB re 1 µΡa) for 7 h. The group dispersion, motility, and swimming height of the fish were analysed before and during the acoustic emission. Dispersion of the fish was found to reduce immediately upon application of low frequency sound (63 and 125 Hz) with a return to control condition after 2 h (indicative of habituation), whereas at 1 kHz, dispersion increased after 2 h without any habituation. The motility decreased significantly at 63 Hz throughout the 7 h of sound exposure. The swimming height decreased significantly for all frequencies other than 125 Hz. The results of this study highlight significant variations in the behavioural responses of juvenile fish that could have consequences on their fitness and survival.


Assuntos
Dourada , Acústica , Animais , Ruído/efeitos adversos , Som , Natação
10.
Molecules ; 25(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466475

RESUMO

The collective migration of cells is a complex integrated process that represents a common theme joining morphogenesis, tissue regeneration, and tumor biology. It is known that a remarkable amount of secondary metabolites produced by aquatic invertebrates displays active pharmacological properties against a variety of diseases. The aim of this review is to pick up selected studies that report the extraction and identification of crude extracts or isolated compounds that exert a modulatory effect on collective cell locomotion and/or skin tissue reconstitution and recapitulate the molecular, biochemical, and/or physiological aspects, where available, which are associated to the substances under examination, grouping the producing species according to their taxonomic hierarchy. Taken all of the collected data into account, marine invertebrates emerge as a still poorly-exploited valuable resource of natural products that may significantly improve the process of skin regeneration and restrain tumor cell migration, as documented by in vitro and in vivo studies. Therefore, the identification of the most promising invertebrate-derived extracts/molecules for the utilization as new targets for biomedical translation merits further and more detailed investigations.


Assuntos
Extratos Vegetais/química , Cicatrização/fisiologia , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Cnidários/efeitos dos fármacos , Extratos Vegetais/farmacologia , Poríferos/efeitos dos fármacos
11.
Mar Drugs ; 17(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671922

RESUMO

The fight against cancer represents a great challenge for researchers and, for this reason, the search for new promising drugs to improve cancer treatments has become inevitable. Oceans, due to their wide diversity of marine species and environmental conditions have proven to be precious sources of potential natural drugs with active properties. As an example, in this context several studies performed on sponges, tunicates, mollusks, and soft corals have brought evidence of the interesting biological activities of the molecules derived from these species. Also, echinoderms constitute an important phylum, whose members produce a huge number of compounds with diverse biological activities. In particular, this review is the first attempt to summarize the knowledge about starfishes and their secondary metabolites that exhibited a significant anticancer effect against different human tumor cell lines. For each species of starfish, the extracted molecules, their effects, and mechanisms of action are described.


Assuntos
Antineoplásicos/farmacologia , Glicosídeos/farmacologia , Estrelas-do-Mar/química , Animais , Produtos Biológicos/farmacologia , Humanos , Invertebrados , Neoplasias/tratamento farmacológico , Oceanos e Mares
12.
Philos Trans A Math Phys Eng Sci ; 376(2121)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29712798

RESUMO

Climate change poses severe risks for businesses, which companies as well as governments need to understand in order to take appropriate steps to manage those. This, however, represents a significant challenge as climate change risk assessment is itself a complex, dynamic and geographically diverse process. A wide range of factors including the nature of production processes and value chains, the location of business sites as well as relationships and interdependencies with customers and suppliers play a role in determining if and how companies are impacted by climate risks. This research explores the methodological challenges for a national-scale assessment of climate risks through the lens of the UK Climate Change Risk Assessment (UKCCRA) process and compares the approaches adopted in the first and second UKCCRA (2011, 2016), while also reflecting on international experiences elsewhere. A review of these issues is presented, drawing on a wide body of contemporary evidence from a range of sources including the research disciplines, grey literature and government policy. The study reveals the methodological challenges and highlights six broad themes, namely scale, evidence base, adaptation responses, scope, interdependencies and public policy. The paper concludes by identifying suitable lessons for future national climate risk assessments, which should guide the next phase of research in preparation for UKCCRA3 and those of national-level risk assessments elsewhere.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'.

13.
Aust Fam Physician ; 46(11): 823-826, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29101917

RESUMO

BACKGROUND: Chest pain is a common presenting complaint in general practice. Serum troponin testing is an important clinical tool to help identify patients who present with suspected acute coronary syndrome (ACS). OBJECTIVE: This article will discuss the role of troponin testing in the diagnosis of ACS, and the role of high-sensitive troponin, which is now in widespread use. The importance of clinical acumen in the interpretation of troponin testing and the pitfalls of troponin testing in the primary care setting will also be explored. DISCUSSION: Patients should be promptly referred to the hospital when there is a high clinical suspicion of ACS. This is to ensure early diagnosis, provide specialist care and minimise the risk of complications. For patients who present with suspected ACS, troponin testing in the community should not delay referral to the emergency department. Troponin testing has a limited role in the primary care setting, which will be discussed in this article.


Assuntos
Síndrome Coronariana Aguda/diagnóstico , Atenção Primária à Saúde/métodos , Troponina/análise , Síndrome Coronariana Aguda/sangue , Humanos , Testes Imediatos , Troponina/sangue
14.
Fish Shellfish Immunol ; 56: 188-191, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27422755

RESUMO

Skin is the first barrier of defense on fish, which is crucial to protection against different stressors, including pathogens. Skin samples obtained from dorsal and ventral part of Sparus aurata specimens were incubated with Photobacterium damselae subsp. piscicida (a pathogen for this fish species), with Shewanella putrefaciens Pdp11 (a probiotic bacteria isolated from healthy gilthead seabream skin) or with both bacteria. The gene expression profile of nine cytokines (il1b, tnfa, il6, il7, il8, il15, il18, il10 and tgfb) was studied by qPCR in all the skin samples. The present findings revealed different patterns of cytokine profile in dorsal and ventral skin of gilthead seabream, which could be related to the influence and susceptibility to a possible infection.


Assuntos
Citocinas/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/veterinária , Probióticos , Dourada , Ração Animal/análise , Animais , Citocinas/metabolismo , Dieta/veterinária , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Photobacterium/fisiologia , Shewanella putrefaciens/química
15.
Biology (Basel) ; 13(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38927258

RESUMO

The cell-free aqueous extract from the coelomic fluid of Holothuria tubulosa was prepared and examined for its glucose-lowering effect on HepG2 cells in vitro. In particular, employing a combination of cytochemical, flow cytometric, PCR, and protein blot techniques, we evaluated its role on glucose internalization and storage and on the upregulation and surface translocation of the two glucose transporters GLUT-2 and -4. The changes in expression, synthesis, and/or activation of the GLUT2-related transcription factor hepatocyte nuclear factor-1 alpha (HNF1α) and the GLUT-4-translocation regulatory factors insulin receptor substrate-1 (IRS-1) and AKT were also studied. Our results showed the improved glucose response by HepG2 cells, leading to an evident increase in glucose consumption/uptake and glycogen storage upon exposure. Moreover, the extract induced molecular reprogramming involving the upregulation of (i) IRS1 gene expression, (ii) the transcription and translation levels of HNF1α, AKT, and GLUT-4, (iii) the phosphorylation level of AKT, (iv) the synthesis of GLUT-2 protein, and (v) the translocation of GLUT-2 and -4 transporters onto the plasma membrane. Cumulatively, our results suggest that the coelomic fluid extract from H. tubulosa can be taken into consideration for the development of novel treatment agents against diabetes mellitus.

16.
J Xenobiot ; 14(3): 893-906, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39051345

RESUMO

Properly managing aquatic organisms is crucial, including protecting endemic species and controlling invasive species. From a circular economy perspective, the sustainable use of aquatic species as a source of bioactive molecules is an area that is increasingly being explored. This includes the use of non-edible portions of seafood, which could pose considerable risks to the environment due to current methods of disposal. Therefore, it is of paramount importance to ensure that the exploitation of these resources does not result in the transfer of pollutants to the final product. This study analyzed two types of non-edible parts from the crayfish Procambarus clarkii: the abdominal portion of the exoskeleton (AbE) and the whole exoskeleton (WE), including the cephalothorax. These portions could potentially be utilized in the context of eradication activities regulated by local authorities. A screening analysis of four classes of pollutants, including pesticides, per- and polyfluoroalkyl substances (PFAS), phthalic acid esters (PAEs), and trace elements (TEs), was performed. The only analytes detected were TEs, and significant differences in the contamination profile were found between AbE and WE. Nevertheless, the levels recorded were comparable to or lower than those reported in the literature and below the maximum levels allowed in the current European legislation for food, suggesting that their potential use is legally permitted. In terms of scalability, the utilization of the entire non-edible P. clarkii portion would represent a sustainable solution for the reuse of waste products.

17.
Chemosphere ; 359: 142278, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734249

RESUMO

Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability. Embryos and cells were exposed to concentrations covering a full 0-100% dose-response curve, with doses ranging from 0 to 40 µg mL-1 for embryos and from 0 to 200 µg mL-1 for cells. These natural marine toxins caused a dose-dependent decrease of normal embryos development and of neuroblastoma cells viability. Toxicity was higher for exposures starting from the gastrula embryonal stage if compared to the zygote and pluteus stages, with an EC50 significantly lower by 33 and 68%, respectively. Embryos exposed to low doses showed a general delay in development with a decrease in the ability to calcify, while higher doses caused 100% block of embryo growth. Exposure of SH-SY5Y neuroblastoma cells to 40 µg mL-1 for 72 h caused 78% mortality, while no effect was observed on their neuronal-like cells derivatives, suggesting a selective targeting of proliferating cells. Western Blot experiments on both model systems displayed the modulation of different molecular markers (HSP60, HSP90, LC3, p62, CHOP and cleaved caspase-7), showing altered stress response and enhanced autophagy and apoptosis, confirmed by increased fragmented DNA in apoptotic nuclei. Our study gives new insights into the molecular strategies that marine invertebrates use when responding to their environmental natural toxins and suggests the E. brachycarpa's extract as a potential source for the development of innovative, environmentally friendly products with larvicide and antineoplastic activity.


Assuntos
Sobrevivência Celular , Neuroblastoma , Oxilipinas , Ouriços-do-Mar , Animais , Sobrevivência Celular/efeitos dos fármacos , Ouriços-do-Mar/efeitos dos fármacos , Humanos , Oxilipinas/farmacologia , Linhagem Celular Tumoral , Alga Marinha , Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Phaeophyceae/química , Desenvolvimento Embrionário/efeitos dos fármacos , Toxinas Marinhas/toxicidade
18.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201464

RESUMO

Anticancer peptides are short and structurally heterogeneous aminoacidic chains, which display selective cytotoxicity mostly against tumor cells, but not healthy cells, based on their different cell surface properties. Their anti-tumoral activity is carried out through interference with intracellular homeostasis, such as plasmalemma integrity, cell cycle control, enzymatic activities and mitochondrial functions, ultimately acting as angiogenesis-, drug resistance- and metastasis-inhibiting agents, immune stimulators, differentiation inducers and necrosis or extrinsic/intrinsic apoptosis promoters. The marine environment features an ever-growing level of biodiversity, and seas and oceans are poorly exploited mines in terms of natural products of biomedical interest. Adaptation processes to extreme and competitive environmental conditions led marine species to produce unique metabolites as a chemical strategy to allow inter-individual signalization and ensure survival against predators, infectious agents or UV radiation. These natural metabolites have found broad use in various applications in healthcare management, due to their anticancer, anti-angiogenic, anti-inflammatory and regeneration abilities. The aim of this review is to pick selected studies that report on the isolation of marine animal-derived peptides and the identification of their anticancer activity in in vitro cultures of cancer cells, and list them with respect to the taxonomical hierarchy of the source organism.

19.
Animals (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067038

RESUMO

Freshwater ecosystems play a key role in global diversity and are subject to a series of anthropic impacts, often leading to biodiversity loss. The organisms inhabiting these sites continuously release DNA into the environment through cells, excrement, gametes and/or decomposing matter; thus, evaluation of this eDNA could revolutionize the monitoring of biodiversity. In this study, environmental DNA metabarcoding was used for the first time in three Sicilian lakes: Lake Poma, Piana degli Albanesi Lake and Lake Scanzano. Results obtained provide the first snapshot of vertebrate biodiversity in these three lakes, where little is known, to provide valuable information useful for creating a baseline of knowledge regarding the biodiversity in these three lakes. Another important result was the detection of marine species, most likely due to some kind of anthropogenic contamination. Environmental DNA is a useful tool to evaluate both biodiversity and the ecological status of the environment; it has the potential to complement traditional methods, and the use of both approaches may offer a more comprehensive understanding of the ecosystem.

20.
Foods ; 12(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36981119

RESUMO

BACKGROUND: Fish oil is one of the most common lipidic substances that is consumed as a dietary supplement. The high omega-3 fatty acid content in fish oil is responsible for its numerous health benefits. Fish species such as mackerel, herring, tuna, and salmon are particularly rich in these lipids, which contain two essential omega-3 fatty acids, known as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). OBJECTIVES: Due to the scarcity of information in the literature, this study aimed to conduct a qualitative and quantitative characterization of triglycerides (TAGs) in crude tuna fish oil using HPLC/HRMS. Fatty acid (FA) determination was also performed using GC/MS. The tuna fish oils analyzed were produced using a green, low-temperature process from the remnants of fish production, avoiding the use of any extraction solvents. RESULTS: The analyses led to the tentative identification and semi-quantitation of 81 TAGs. In silico saponification and comparison with fatty acid methyl ester results helped to confirm the identified TAGs and their quantities. The study found that the produced oil is rich in EPA, DHA, and erucic acid, while the negligible isomerization of fatty acids to trans-derivatives was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA