Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1027662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531406

RESUMO

Introduction: Rice productivity is severely hampered by heat stress (HS) which induces oxidative stress in this crop. This oxidative stress can be alleviated using various exogenous chemicals, including spermidine (Spd). Therefore, the present study was carried out to characterize HS components and to elucidate the role of exogenous Spd application in rice at the flowering stage. Methods: Two contrasting rice genotypes, i.e. Nagina22 (N22) and Pusa Basmati-1121 (PB-1121) were placed in temperature tunnels and exposed to HS (38-43°C) with and without Spd (1.5 mM) foliar application during the heading stage till the end of the anthesis stage. Result: Heat stress induced the production of H2O2 and thiobarbituric acid reactive substances, which resulted in lower photosynthesis, spikelet sterility, and reduced grain yield. Interestingly, foliar application of Spd induced antioxidant enzyme activities and thus increased total antioxidant capacity resulting in higher photosynthesis, spikelet fertility, and improved grain yield under HS in both genotypes. Under HS with Spd, higher sugar content was recorded as compared to HS alone, which maintained the osmotic equilibrium in leaf and spikelets. Spd application initiated in vivo polyamine biosynthesis, which increased endogenous polyamine levels. Discussion: This study corroborates that the exogenous application of Spd is promising in induction of antioxidant defence and ameliorating HS tolerance in rice via improved photosynthesis and transpiration. Thereby, the study proposes the potential application of Spd to reduce HS in rice under current global warming scenario.

2.
PLoS One ; 11(1): e0147213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808306

RESUMO

The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8-27.6% and 9.5-23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5-26.5% and 7.5%-15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48-49% and 30.5-45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321-0.854 and 0.299-0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil.


Assuntos
Secas , Lens (Planta)/fisiologia , Adaptação Fisiológica/genética , Alelos , Clorofila/análise , Análise por Conglomerados , DNA de Plantas/genética , Variação Genética , Genoma de Planta , Genótipo , Hidroponia , Lens (Planta)/classificação , Lens (Planta)/genética , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal , Folhas de Planta/química , Polimorfismo Genético , Chuva , Plântula/fisiologia , Água/análise
3.
PLoS One ; 11(7): e0160073, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467074

RESUMO

Aluminium (Al) stress was imposed on 285 lentil genotypes at seedling stage under hydroponics to study its effects on morpho-physiological traits where resistant cultigens and wilds showed minimum reduction in root and shoot length and maximum root re-growth (RRG) after staining. Molecular assortment based on 46 simple sequence repeat (SSR) markers clustered the genotypes into 11 groups, where wilds were separated from the cultigens. Genetic diversity and polymorphism information content (PIC) varied between 0.148-0.775 and 0.140-0.739, respectively. Breeding lines which were found to be most resistant (L-7903, L-4602); sensitive cultivars (BM-4, L-4147) and wilds ILWL-185 (resistant), ILWL-436 (sensitive) were grouped into different clusters. These genotypes were also separated on the basis of population structure and Jaccard's similarity index and analysed to study Al resistance mechanism through determination of different attributes like localization of Al and callose, lipid peroxidation, secretion of organic acids and production of antioxidant enzymes. In contrast to sensitive genotypes, in resistant ones most of the Al was localized in the epidermal cells, where its movement to apoplastic region was restricted due to release of citrate and malate. Under acidic field conditions, resistant genotypes produced maximum seed yield/plant as compared to sensitive genotypes at two different locations i.e. Imphal, Manipur, India and Basar, Arunanchal Pradesh, India during 2012-13, 2013-14 and 2014-15. These findings suggest that Al stress adaptation in lentil is through exclusion mechanism and hybridization between the contrasting genotypes from distinct clusters can help in development of resistant varieties.


Assuntos
Alumínio/toxicidade , Lens (Planta)/efeitos dos fármacos , Estresse Fisiológico , Análise por Conglomerados , Peróxido de Hidrogênio/química , Lens (Planta)/fisiologia , Peroxidação de Lipídeos
4.
Int J Biol Macromol ; 47(3): 348-55, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20685360

RESUMO

Microwave synthesis of starch-graft-poly(ethylacrylate) was optimized to obtain efficient Zn(II) adsorbent that has been characterized using IR, XRD and SEM analyses. Using the sample, adsorption of Zn(II) was studied as a function of pH, sorbent dose, initial Zn(II) concentration, % grafting, temperature and ionic strength. Equilibrium isotherm data were analyzed using the Langmuir and Freundlich isotherms at optimum pH (pH 8) where the data fitted satisfactorily well to both the isotherms indicating sorption of Zn(II) on the copolymer was complex and involved more than one mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy, and entropy of sorption. At 30 degrees C, the maximum sorption capacity of the microwave synthesized copolymer was 172mgg(-1) as compared to 116mgg(-1) for the conventionally synthesized starch-graft-poly(ethylacrylate) indicating the advantage of using microwaves in the copolymer synthesis. In order to investigate the mechanism of sorption,kinetic data were modeled using the first order Lagergren, pseudo-second-order and intra-particle diffusion models where chemisorption seem significant in the rate controlling step. The regeneration experiments revealed that the starch-graft-poly(ethylacrylate) can be successfully reused for five cycles without any significant loss in the sorption capacity.


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Micro-Ondas , Amido/química , Zinco/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA