Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(47): 19218-19229, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37948607

RESUMO

The synthesis, characterization, electrochemical performance, and theoretical modeling of two base-metal charge carrier complexes incorporating a pendent quaternary ammonium group, [Ni(bppn-Me3)][BF4], 3', and [Fe(PyTRENMe)][OTf]3, 4', are described. Both complexes were produced in high yield and fully characterized using NMR, IR, and UV-vis spectroscopies as well as elemental analysis and single-crystal X-ray crystallography. The solubility of 3' in acetonitrile showed a 283% improvement over its neutral precursor, whereas the solubility of complex 4' was effectively unchanged. Cyclic voltammetry indicates an ∼0.1 V positive shift for all waves, with some changes in reversibility depending on the wave. Bulk electrochemical cycling demonstrates that both 3' and 4' can utilize the second more negative wave to a degree, whereas 4' ceases to have a reversible positive wave. Flow cell testing of 3' and 4' with Fc as the posolyte reveals little improvement to the cycling performance of 3' compared with its parent complex, whereas 4' exhibits reductions in capacity decay when cycling either negative wave. Postcycling CVs indicate that crossover is the likely source of capacity loss in complexes 3, 3', and 4' because there is little change in the CV trace. Density functional theory calculations indicate that the ammonium group lowers the HOMO energy in 3' and 4', which may impart stability to cycling negative waves while making positive waves less accessible. Overall, the incorporation of a positively charged species can improve solubility, stored electron density, and capacity decay depending on the complex, features critical to high energy density redox flow battery performance.

2.
Nat Mater ; 20(3): 370-377, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33288898

RESUMO

Modern electrochemical energy conversion devices require more advanced proton conductors for their broad applications. Phosphonated polymers have been proposed as anhydrous proton conductors for fuel cells. However, the anhydride formation of phosphonic acid functional groups lowers proton conductivity and this prevents the use of phosphonated polymers in fuel cell applications. Here, we report a poly(2,3,5,6-tetrafluorostyrene-4-phosphonic acid) that does not undergo anhydride formation and thus maintains protonic conductivity above 200 °C. We use the phosphonated polymer in fuel cell electrodes with an ion-pair coordinated membrane in a membrane electrode assembly. This synergistically integrated fuel cell reached peak power densities of 1,130 mW cm-2 at 160 °C and 1,740 mW cm-2 at 240 °C under H2/O2 conditions, substantially outperforming polybenzimidazole- and metal phosphate-based fuel cells. Our result indicates a pathway towards using phosphonated polymers in high-performance fuel cells under hot and dry operating conditions.

3.
RSC Adv ; 10(9): 5010-5025, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498278

RESUMO

Fabrication of high-conductivity ion exchange membranes (IEMs) is crucial to improve the performance of non-aqueous vanadium redox flow batteries (NAVRFBs). In the present work, anion exchange membranes with high-conductivity were fabricated by aligning ion channels of the polymer electrolyte impregnated in porous polytetrafluoroethylene (PTFE) under electric fields. It was observed that the ion channels of the polymer electrolyte were uniformly orientated in the atomic-force microscopy image. Its morphological change could minimize detouring of the transport of BF4 - ions. The results showed through-plane conductivity was improved from 12.7 to 33.1 mS cm-1. The dimensional properties of the fabricated membranes were also enhanced compared with its cast membrane owing to the reinforcing effect of the substrate. Especially, the NAVRFB assembled with the optimized membrane showed increased capacities, with a 97% coulombic efficiency and 70% energy efficiency at 80 mA cm-2. Furthermore, the optimized membrane made it possible to operate the NAVRFB at 120 mA cm-2. Its operating current density was 120 times higher than that of a frequently used AHA membrane for RFBs.

4.
ACS Appl Mater Interfaces ; 12(1): 1825-1831, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820621

RESUMO

Interactions between a catalyst and electrolyte have paramount importance for the performance of electrochemical devices. Here, we present the cation-hydroxide-water coadsorption on the Pt surface by a rotating disk electrode and neutron reflectometry. The rotating disk electrode experiments show that the current density of Pt rapidly dropped at hydrogen oxidation potentials due to tetramethylammonium hydroxide (TMAOH)-water coadsorption. Subsequent neutron reflectometry in 0.1 M TMAOD/D2O reveals that the thickness of the coadsorbed layer increased to 18 Å after 10.5 h exposure at 0.1 V vs reverse hydrogen electrode (RHE). The scattering length density analysis revealed that the TMAOD to water ratio in the coadsorbed layer was 4.5, which was significantly higher than the reportedly highest TMAOH concentration in aqueous solution. Finally, we discuss the potential impact of the coadsorbed layer on the performance and durability of alkaline membrane fuel cells, which sheds light on the material design of high-performance alkaline electrochemical devices.

5.
ChemSusChem ; 12(7): 1304-1309, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30675995

RESUMO

The use of nickel complexes utilizing non-innocent ligands based on picolinamide to function as redox carriers in flow batteries was explored. The picolinamide moiety was linked together with -CH2 CH2 - (bpen), -CH2 CH2 CH2 - (bppn), and -C6 H4 - (bpb) moieties, resulting in two, three, and four quasi-reversible waves, respectively, for the nickel complexes and >3 V difference between the outermost positive and negative waves. The redox events were theoretically modelled for each complex, showing excellent agreement (<0.3 V difference) between the experimental and modelled potentials. Bulk cycling of the most soluble complex, Ni(bppn), indicated only one of the three waves was reversible. Therefore, Ni(bppn) has the ability to act as a negative charge redox carrier in flow cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA