RESUMO
Aggrephagy describes the selective lysosomal transport and turnover of cytoplasmic protein aggregates by macro-autophagy. In this process, protein aggregates and conglomerates are polyubiquitinated and then sequestered by autophagosomes. Soluble selective autophagy receptors (SARs) are central to aggrephagy and physically bind to both ubiquitin and the autophagy machinery, thus linking the cargo to the forming autophagosomal membrane. Because the accumulation of protein aggregates is associated with cytotoxicity in several diseases, a better molecular understanding of aggrephagy might provide a conceptual framework to develop therapeutic strategies aimed at delaying the onset of these pathologies by preventing the buildup of potentially toxic aggregates. We review recent advances in our knowledge about the mechanism of aggrephagy.
Assuntos
Autofagia , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Autofagossomos , Lisossomos/metabolismoRESUMO
Macroautophagy (hereafter autophagy) is a highly conserved catabolic pathway, which mediates the delivery of unwanted cytoplasmic structures and organelles to lysosomes for degradation. In numerous situations, autophagy is highly selective and exclusively targets specific intracellular components. Selective types of autophagy are a central element of our cell-autonomous innate immunity as they can mediate the turnover of viruses or bacteria, that gain access to the cytoplasm of the cell. Selective autophagy also modulates other aspects of our immunity by turning over specific immunoregulators. Throughout evolution, however, the continuous interaction between this fundamental cellular pathway and pathogens has led several pathogens to develop exquisite mechanisms to inhibit or subvert selective types of autophagy, to promote their intracellular multiplication. This Cell Science at a Glance article and the accompanying poster provides an overview of the selective autophagy of both pathogens, known as xenophagy, and of immunoregulators, and highlights a few archetypal examples that illustrate molecular strategies developed by viruses and bacteria to manipulate selective autophagy for their own benefit.
Assuntos
Macroautofagia , Vírus , Autofagia , Bactérias , Imunidade Inata , LisossomosRESUMO
Coronavirus (CoV) nucleocapsid (N) proteins are key for incorporating genomic RNA into progeny viral particles. In infected cells, N proteins are present at the replication-transcription complexes (RTCs), the sites of CoV RNA synthesis. It has been shown that N proteins are important for viral replication and that the one of mouse hepatitis virus (MHV), a commonly used model CoV, interacts with nonstructural protein 3 (nsp3), a component of the RTCs. These two aspects of the CoV life cycle, however, have not been linked. We found that the MHV N protein binds exclusively to nsp3 and not other RTC components by using a systematic yeast two-hybrid approach, and we identified two distinct regions in the N protein that redundantly mediate this interaction. A selective N protein variant carrying point mutations in these two regions fails to bind nsp3 in vitro, resulting in inhibition of its recruitment to RTCs in vivo Furthermore, in contrast to the wild-type N protein, this N protein variant impairs the stimulation of genomic RNA and viral mRNA transcription in vivo and in vitro, which in turn leads to impairment of MHV replication and progeny production. Altogether, our results show that N protein recruitment to RTCs, via binding to nsp3, is an essential step in the CoV life cycle because it is critical for optimal viral RNA synthesis.IMPORTANCE CoVs have long been regarded as relatively harmless pathogens for humans. Severe respiratory tract infection outbreaks caused by severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, however, have caused high pathogenicity and mortality rates in humans. These outbreaks highlighted the relevance of being able to control CoV infections. We used a model CoV, MHV, to investigate the importance of the recruitment of N protein, a central component of CoV virions, to intracellular platforms where CoVs replicate, transcribe, and translate their genomes. By identifying the principal binding partner at these intracellular platforms and generating a specific mutant, we found that N protein recruitment to these locations is crucial for promoting viral RNA synthesis. Moreover, blocking this recruitment strongly inhibits viral infection. Thus, our results explain an important aspect of the CoV life cycle and reveal an interaction of viral proteins that could be targeted in antiviral therapies.
Assuntos
Vírus da Hepatite Murina/fisiologia , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/biossíntese , Transcrição Gênica/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos , Proteínas do Nucleocapsídeo/genética , RNA Viral/genética , Proteínas não Estruturais Virais/genéticaRESUMO
The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.
Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Retículo Endoplasmático/química , Feminino , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Fagossomos/metabolismo , Ligação Proteica , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologiaRESUMO
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular catabolic transport route that generally allows the lysosomal degradation of cytoplasmic components, including bulk cytosol, protein aggregates, damaged or superfluous organelles and invading microbes. Target structures are sequestered by double-membrane vesicles called autophagosomes, which are formed through the concerted action of the autophagy (ATG)-related proteins. Until recently it was assumed that ATG proteins were exclusively involved in autophagy. A growing number of studies, however, have attributed functions to some of them that are distinct from their classical role in autophagosome biogenesis. Autophagy-independent roles of the ATG proteins include the maintenance of cellular homeostasis and resistance to pathogens. For example, they assist and enhance the turnover of dead cells and microbes upon their phagocytic engulfment, and inhibit murine norovirus replication. Moreover, bone resorption by osteoclasts, innate immune regulation triggered by cytoplasmic DNA and the ER-associated degradation regulation all have in common the requirement of a subset of ATG proteins. Microorganisms such as coronaviruses, Chlamydia trachomatis or Brucella abortus have even evolved ways to manipulate autophagy-independent functions of ATG proteins in order to ensure the completion of their intracellular life cycle. Taken together these novel mechanisms add to the repertoire of functions and extend the number of cellular processes involving the ATG proteins.
Assuntos
Autofagia/fisiologia , Proteínas/metabolismo , Animais , Homeostase/fisiologia , Humanos , Fagossomos/metabolismo , Fagossomos/fisiologiaRESUMO
Chikungunya virus (CHIKV) is a human pathogen causing outbreaks of febrile illness for which vaccines and specific treatments remain unavailable. Autophagy-related (ATG) proteins and autophagy receptors are a set of host factors that participate in autophagy, but have also shown to function in other unrelated cellular pathways. Although autophagy is reported to both inhibit and enhance CHIKV replication, the specific role of individual ATG proteins remains largely unknown. Here, a siRNA screen was performed to evaluate the importance of the ATG proteome and autophagy receptors in controlling CHIKV infection. We observed that 7 out of 50 ATG proteins impact the replication of CHIKV. Among those, depletion of the mitochondrial protein and autophagy receptor BCL2 Interacting Protein 3 (BNIP3) increased CHIKV infection. Interestingly, BNIP3 controls CHIKV independently of autophagy and cell death. Detailed analysis of the CHIKV viral cycle revealed that BNIP3 interferes with the early stages of infection. Moreover, the antiviral role of BNIP3 was found conserved across two distinct CHIKV genotypes and the closely related Semliki Forest virus. Altogether, this study describes a novel and previously unknown function of the mitochondrial protein BNIP3 in the control of the early stages of the alphavirus viral cycle.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Replicação Viral/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismoRESUMO
Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disease associated with severe cognitive and motor deficits. BPAN pathophysiology and phenotypic spectrum are still emerging due to the fact that mutations in the WDR45 (WD repeat domain 45) gene, a regulator of macroautophagy/autophagy, were only identified a decade ago. In the first international symposium dedicated to BPAN, which was held in Lyon, France, a panel of international speakers, including several researchers from the autophagy community, presented their work on human patients, cellular and animal models, carrying WDR45 mutations and their homologs. Autophagy researchers found an opportunity to explore the defective function of autophagy mechanisms associated with WDR45 mutations, which underlie neuronal dysfunction and early death. Importantly, BPAN is one of the few human monogenic neurological diseases targeting a regulator of autophagy, which raises the possibility that it is a relevant model to directly assess the roles of autophagy in neurodegeneration and to develop autophagy restorative therapeutic strategies for more common disorders.Abbreviations: ATG: autophagy related; BPAN: beta-propeller protein-associated neurodegeneration; ER: endoplasmic reticulum; KO: knockout; NBIA: neurodegeneration with brain iron accumulation; PtdIns3P: phosphatidylinositol-3-phosphate; ULK1: unc-51 like autophagy activating kinase 1; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting.
Assuntos
Proteínas de Transporte , Doenças Neurodegenerativas , Animais , Humanos , Proteínas de Transporte/genética , Doenças Neurodegenerativas/genética , Autofagia/genética , Mutação , NeurôniosRESUMO
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a relentlessly progressive neurodegenerative disorder caused by mutations in the C19orf12 gene. C19orf12 has been implicated in playing a role in lipid metabolism, mitochondrial function, and autophagy, however, the precise functions remain unknown. To identify new robust cellular targets for small compound treatments, we evaluated reported mitochondrial function alterations, cellular signaling, and autophagy in a large cohort of MPAN patients and control fibroblasts. We found no consistent alteration of mitochondrial functions or cellular signaling messengers in MPAN fibroblasts. In contrast, we found that autophagy initiation is consistently impaired in MPAN fibroblasts and show that C19orf12 expression correlates with the amount of LC3 puncta, an autophagy marker. Finally, we screened 14 different autophagy modulators to test which can restore this autophagy defect. Amongst these compounds, carbamazepine, ABT-737, LY294002, oridonin, and paroxetine could restore LC3 puncta in the MPAN fibroblasts, identifying them as novel potential therapeutic compounds to treat MPAN. In summary, our study confirms a role for C19orf12 in autophagy, proposes LC3 puncta as a functionally robust and consistent readout for testing compounds, and pinpoints potential therapeutic compounds for MPAN.
RESUMO
Photodynamic therapy (PDT) is a process in which a photosensitizer (PS) is exposed to specific wavelengths and generates reactive oxygen species (ROS) which act within nanometers. The low invasive nature and directed cytotoxicity of this approach render it attractive to the treatment of different conditions, including the ones that affect the central nervous system (CNS). The effect of PDT on healthy neurons is one main concern over its use in the CNS, since neuronal-like cells were shown to be particularly sensitive to certain PSs. Among available PSs, 1,9-dimethyl-methylene blue (DMMB) stands out as being resistant to reduction to its inactive leuco form and by being able to produce high levels of singletoxygen. In this study, we aimed to investigate DMMB photodamage mechanisms in the hippocampal cell line HT22. Our results demonstrate that DMMB-PDT decrease in cell viability was linked with an increase in cell death and overall ROS production. Besides, it resulted in a significant increase in mitochondrial ROS production and decreased mitochondria membrane potential. Furthermore, DMMB-PDT significantly increased the presence of acidic autolysosomes, which was accompanied by an increase in ATG1 and ATG8 homologue GaBarap1 expression, and decreased DRAM1 expression. Taken together our results indicated that mitochondrial and autophagic dysfunction underlie DMMB-PDT cytotoxicity in neuronal cells.
Assuntos
Fotoquimioterapia , Fotoquimioterapia/métodos , Azul de Metileno/metabolismo , Azul de Metileno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismoRESUMO
Autophagy is a lysosomal degradative pathway essential for maintaining cellular homeostasis and is also implicated in multiple aspects of both innate and adaptive immunity. Neuroinflammation, along with demyelination and axonal loss, is an important component of multiple sclerosis (MS). Induction of autophagy ameliorated disease progression in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, underlying a possible link between autophagy and MS pathology. However, it is still unclear how autophagy is affected during different stages of MS. Here, we show a decreased expression of the autophagy-related (ATG) genes during the acute phase of EAE development in mice as well as in mixed active/inactive lesions of post-mortem human MS brain tissues. Using spatial transcriptomics, we observed that this decreased ATG gene expression is most prominent in the core of mixed active/inactive lesions. Furthermore, we observed a hyper-activation of the mammalian target of rapamycin complex 1 (mTORC1) in lesions, which could inhibit both the initiation of autophagy and the transcription factors that regulate the expression of the ATG genes. Thus, based on our data, we propose a negative regulation of autophagy in MS, possibly through persistent mTORC1 activation, which depends on the lesion stage. Our results contribute to the understanding of the role of autophagy in different stages of MS pathology and point to the mTORC1 pathway as a potential modulator that likely regulates central nervous system (CNS) homeostasis and neuroinflammation in MS.
RESUMO
Autophagy is initiated by multimembrane vesicle (autophagosome) formation upon mammalian target of rapamycin inhibition and phosphatidylinositol 3-phosphate [PtdIns(3)P] generation. Upstream of microtubule-associated protein 1 light chain 3 (LC3), WD-repeat proteins interacting with phosphoinositides (WIPI proteins) specifically bind PtdIns(3)P at forming autophagosomal membranes and become membrane-bound proteins of generated autophagosomes. Here, we applied automated high-throughput WIPI-1 puncta analysis, paralleled with LC3 lipidation assays, to investigate Ca(2+)-mediated autophagy modulation. We imposed cellular stress by starvation or administration of etoposide (0.5-50 µM), sorafenib (1-40 µM), staurosporine (20-500 nM), or thapsigargin (20-500 nM) (1, 2, or 3 h) and measured the formation of WIPI-1 positive autophagosomal membranes. Automated analysis of up to 5000 individual cells/treatment demonstrated that Ca(2+) chelation by BAPTA-AM (10 and 30 µM) counteracted starvation or pharmacological compound-induced WIPI-1 puncta formation and LC3 lipidation. Application of selective Ca(2+)/calmodulin-dependent kinase kinase (CaMKK) α/ß and calmodulin-dependent kinase (CaMK) I/II/IV inhibitors 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate (STO-609; 10-30 µg/ml) and 2-(N-[2-hydroxyethyl])-N-(4-methoxybenzenesulfonyl)amino-N-(4-chlorocinnamyl)-N-methylamine (KN-93; 1-10 µM), respectively, significantly reduced starvation-induced autophagosomal membrane formation, suggesting that Ca(2+) mobilization upon autophagy induction involves CaMKI/IV. By small interefering RNA (siRNA)-mediated down-regulation of CaMKI or CaMKIV, we demonstrate that CaMKI contributes to stimulation of WIPI-1. In line, WIPI-1 positive autophagosomal membranes were formed in AMP-activated protein kinase (AMPK) α(1)/α(2)-deficient mouse embryonic fibroblasts upon nutrient starvation, whereas basal autophagy was prominently reduced. However, transient down-regulation of AMPK by siRNA resulted in an increased basal level of both WIPI-1 puncta and LC3 lipidation, and nutrient-starvation induced autophagy was sensitive to STO-609/KN-93. Our data provide evidence that pharmacological compound-modulated and starvation-induced autophagy involves Ca(2+)-dependent signaling, including CaMKI independent of AMPKα(1)/α(2). Our data also suggest that AMPKα(1)/α(2) might differentially contribute to the regulation of WIPI-1 at the onset of autophagy.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Proteínas Relacionadas à Autofagia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular Tumoral , Células Cultivadas , Quelantes/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Transdução de Sinais/efeitos dos fármacosRESUMO
The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ß-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat ß-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders.Abbreviations: ATG/Atg: autophagy related; BPAN: ß-propeller protein associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; EEG: electroencephalograph; ENO2/neuron-specific enolase, enolase 2; EOEE: early-onset epileptic encephalopathy; ER: endoplasmic reticulum; ID: intellectual disability; IDR: intrinsically disordered region; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NCOA4: nuclear receptor coactivator 4; PtdIns3P: phosphatidylinositol-3-phosphate; RLS: Rett-like syndrome; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting.
Assuntos
Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Autofagia/genética , Proteínas de Transporte/metabolismo , Humanos , Macroautofagia , Doenças Neurodegenerativas/metabolismo , Transtornos do Neurodesenvolvimento/genéticaRESUMO
ATG13 and FIP200 are two subunits of the ULK kinase complex, a key regulatory component of the autophagy machinery. We have previously found that the FIP200-ATG13 subcomplex controls picornavirus replication outside its role in the ULK kinase complex and autophagy. Here, we characterized HSBP1, a very small cytoplasmic coiled-coil protein, as a novel interactor of FIP200 and ATG13 that binds these two proteins via FIP200. HSBP1 is a novel pro-picornaviral host factor since its knockdown or knockout, inhibits the replication of various picornaviruses. The anti-picornaviral function of the FIP200-ATG13 subcomplex was abolished when HSBP1 was depleted, inferring that this subcomplex negatively regulates HSBP1's pro-picornaviral function during infections. HSBP1depletion also reduces the stability of ULK kinase complex subunits, resulting in an impairment in autophagy induction. Altogether, our data show that HSBP1 interaction with FIP200-ATG13-containing complexes is involved in the regulation of different cellular pathways.
Assuntos
Autofagia , Picornaviridae , Proteínas Relacionadas à Autofagia/genética , Proteínas de Ciclo Celular , Picornaviridae/genética , Fatores de TranscriçãoRESUMO
The integral membrane protein ATG9A plays a key role in autophagy. It displays a broad intracellular distribution and is present in numerous compartments, including the plasma membrane (PM). The reasons for the distribution of ATG9A to the PM and its role at the PM are not understood. Here, we show that ATG9A organizes, in concert with IQGAP1, components of the ESCRT system and uncover cooperation between ATG9A, IQGAP1 and ESCRTs in protection from PM damage. ESCRTs and ATG9A phenocopied each other in protection against PM injury. ATG9A knockouts sensitized the PM to permeabilization by a broad spectrum of microbial and endogenous agents, including gasdermin, MLKL and the MLKL-like action of coronavirus ORF3a. Thus, ATG9A engages IQGAP1 and the ESCRT system to maintain PM integrity.
Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Proteínas de Membrana/genética , Microscopia Confocal , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genéticaRESUMO
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost-effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll-like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro-inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Cloroquina , Humanos , Hidroxicloroquina/uso terapêuticoRESUMO
Multiple sclerosis (MS) is a complex auto-immune disorder of the central nervous system (CNS) that involves a range of CNS and immune cells. MS is characterized by chronic neuroinflammation, demyelination, and neuronal loss, but the molecular causes of this disease remain poorly understood. One cellular process that could provide insight into MS pathophysiology and also be a possible therapeutic avenue, is autophagy. Autophagy is an intracellular degradative pathway essential to maintain cellular homeostasis, particularly in neurons as defects in autophagy lead to neurodegeneration. One of the functions of autophagy is to maintain cellular homeostasis by eliminating defective or superfluous proteins, complexes, and organelles, preventing the accumulation of potentially cytotoxic damage. Importantly, there is also an intimate and intricate interplay between autophagy and multiple aspects of both innate and adaptive immunity. Thus, autophagy is implicated in two of the main hallmarks of MS, neurodegeneration, and inflammation, making it especially important to understand how this pathway contributes to MS manifestation and progression. This review summarizes the current knowledge about autophagy in MS, in particular how it contributes to our understanding of MS pathology and its potential as a novel therapeutic target.
RESUMO
Macroautophagy/autophagy is a conserved transport pathway where targeted structures are sequestered by phagophores, which mature into autophagosomes, and then delivered into lysosomes for degradation. Autophagy is involved in the pathophysiology of numerous diseases and its modulation is beneficial for the outcome of numerous specific diseases. Several lysosomal inhibitors such as bafilomycin A1 (BafA1), protease inhibitors and chloroquine (CQ), have been used interchangeably to block autophagy in in vitro experiments assuming that they all primarily block lysosomal degradation. Among them, only CQ and its derivate hydroxychloroquine (HCQ) are FDA-approved drugs and are thus currently the principal compounds used in clinical trials aimed to treat tumors through autophagy inhibition. However, the precise mechanism of how CQ blocks autophagy remains to be firmly demonstrated. In this study, we focus on how CQ inhibits autophagy and directly compare its effects to those of BafA1. We show that CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle. Furthermore, CQ induces an autophagy-independent severe disorganization of the Golgi and endo-lysosomal systems, which might contribute to the fusion impairment. Strikingly, HCQ-treated mice also show a Golgi disorganization in kidney and intestinal tissues. Altogether, our data reveal that CQ and HCQ are not bona fide surrogates for other types of late stage lysosomal inhibitors for in vivo experiments. Moreover, the multiple cellular alterations caused by CQ and HCQ call for caution when interpreting results obtained by blocking autophagy with this drug.
Assuntos
Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Lisossomos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/ultraestrutura , Receptores ErbB/metabolismo , Feminino , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Hidroxicloroquina/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Macrolídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteólise/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismoRESUMO
Autophagy is an intracellular degradation pathway that is regulated by the autophagy-related (ATG) proteins. For a long time it has been thought that ATG proteins were exclusively required for autophagy, but recent experimental evidence has revealed that these proteins are part of other cellular pathways, individually or as a functional group. To estimate the extent of these so-called unconventional functions of the ATG proteins, we decided to perform an unbiased siRNA screen targeting the entire ATG proteome and used viral replication as the readout. Our results have uncovered that a surprisingly high number of ATG proteins (36%) have a positive or negative role in promoting virus replication outside their classical role in autophagy. With the increasing knowledge about ATG protein unconventional functions and our investigation results, the interpretations about the possible involvement of autophagy in cellular or organismal functions that solely rely on the depletion of a single ATG protein, should be considered cautiously.
Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Animais , Humanos , Modelos Biológicos , Análise de Sequência de RNA , Viroses/metabolismo , Viroses/patologia , Replicação ViralRESUMO
The study of microbe infections has always been a very effective approach to unveil and dissect cellular pathways. Autophagy is not an exception. Although some of the breakthrough discoveries in the field were obtained using yeast, pathogens have been and still are a great tool to discover and characterize new molecular and functional aspects of autophagy. Research on pathogens has helped to acquire knowledge about selective types of autophagy and the assembly of the autophagy machinery, i.e the autophagy-related (ATG) proteins, but also about alternative cellular roles of this pathway, such as secretion. Finally, microbes have also served to discover and characterize unconventional functions of the ATG proteins, which are uncoupled from their role in autophagy. In our recent study, we have taken advantage of viruses as a screening tool to determine the extent of the unconventional functions of the ATG proteome and characterize one of them.
RESUMO
Autophagy is a catabolic process regulated by the orchestrated action of the autophagy-related (ATG) proteins. Recent work indicates that some of the ATG proteins also have autophagy-independent roles. Using an unbiased siRNA screen approach, we explored the extent of these unconventional functions of ATG proteins. We determined the effects of the depletion of each ATG proteome component on the replication of six different viruses. Our screen reveals that up to 36% of the ATG proteins significantly alter the replication of at least one virus in an unconventional fashion. Detailed analysis of two candidates revealed an undocumented role for ATG13 and FIP200 in picornavirus replication that is independent of their function in autophagy as part of the ULK complex. The high numbers of unveiled ATG gene-specific and pathogen-specific functions of the ATG proteins calls for caution in the interpretation of data, which rely solely on the depletion of a single ATG protein to specifically ablate autophagy.